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"Non-relativistic, classical statistical mechanics is used
to describe a dense fluid of molecules composed of nuclei and
electrons with a purely coulomb interaction potential, A general
equation of change is derived for the time rate of change of any
macroscopic (ensemble averaged) dynamical variable. From this
general equation, Maxwell's equations in a medium and the hydro-
dynamic equations of change are derived and expressed in terms
of molecular properties, e.g. polarization and magnetization
densities. These equations are discussed in the limiting case

of low density and compared with previous results.
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TINTRODUCTION

A fluid system near equilibrium may be described either
microscopically or macroscopically. Microscopically, the system
is regarded as being composed of discrete particles, the state of
each particle being described by its position and momentum
coordinates. The time evolution of the state of the system is
described by Newton's equations. From a macroscopic viewpoint,
the system is considered as a continuous fluid, the state of each
infinitesimal region of the fluid being described by its mass,
momentum, and energy densities. The time evolution of these
densities is described by the hydrodynamic equations. Naturally,
a mécroscopic description is the only practical one for a system of
more than a few hundred particles. Using such a description, the
fundamental problem of treating a fluid near equilibrium is that
of obtaining the hydrodynamic equations of change and the
phenomenological coefficients for the fluid.

For a dilute gas, these equations are particularly easy to
derive.1 The equation of continuity or mass density equation of

change is

Bg o= 0) - (0.0.1)

the equation of motion or momentum density equation of change is
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and the equation of change for the energy density is

1
Pj(\);;@k> _}_jw ) X(UK+"}).""’1>+ EK.,(_{ +_¢V]-_-_0. (0.0.3)

In the above, radiation effects and external forces are neglected.
The quantity, j) , is the macroscopic mass density, A is the
stream velocity, 4@K is the kinetic pressure tensor, L& is the
kinetic energy density, and ﬁbK is the kinetic energy flux.

Irving and Kirkwood have studied the more general problem and
have derived the equations of change for a dense fluid.2 Essentially,
this derivation results in the addition of interaction or ''collisional"
terms to the pressure tensor, energy density, and energy flux of
equations (0.0.2) and (0.0.3). However, this work was restricted
to systems for which the interparticle potential approaches zero
faster than the inverse square or higher power of the interparticle
distance. Hence, the work is not applicable to coulomb systems for
which the interparticle potential is proportional to the inverse
first power of the interparticle distance. The equations of change
for such a system are essential to the study of magnetchydrodynamics,
plasma physics, and any field concerned with the behavior of ionized

gases. Thus it is desirable to supplement the preceding development




by deriving the equations of change for a2 dense coulomb gas,

The Irving and Kirkwood derivation of the equations of change is
statistical, i.e. the macroscopic description of the system is
obtained by statistically averaging over an ensemble of systems.

(This procedure is discussed in detail in Chapter 1 of the present
work.) Many of the derivations of the equations of change for a
coulomb system, however, are non-statistica1.3’4 Starting with
(0.0.1), (0.0.2), and (0.0.3), the equations for a dilute system,

the derivations add terms to the energy, momentum; and flux densities.
The added terms are macroscopic rebresentations of the electromagnetic
properties which arise from the microscopic coulomb interactions of
the system. Although there is good agreement among various sources

as to what these contributions are for a system of isolated point
particles, there is disagreement when the particles are assumed to

be grouped into molecules. From a purely classical.viewpoint, the
potential between two molecules is a result of the interactions
between the nuclei and electrons composing the molecules. 1In view

of the complexity of these interactions, the intermolecular potential
is usually expanded in a Taylor series about the center of mass of

the molecule so that the molecule is represented as a collection

of superimposed multipoles (monopole, dipole, quadrapole, etc.).

In the macroscopic equations of change for a molecular system, the electro-
magnetic contributions contain terms involving the multipole densities.

The reasoning that is used to introduce these densities into the equations




of change when they are non-statistically derived is not very satisfying
and leads to the conflicting results among the various sources that

we mentioned previously. Hence a statistical derivation of the
equations of change for the coulomb system is extremely desirable.

In recent years several authors have in a limited way under taken
statistical derivations. Mazur has derived an equation of momentum
change by such an approach.5 He neglected magnetic effects, however,
and treated only a system of neutral molecules. Britten included
magnetic effects in his derivation of the mass and momentum.
equations for a coulomb system but considered only point particles.
Kaufman derived an energy equation of change as well as mass and
momentum equations of change, but again considered only point
particles.7

Tt is the purpcse of this work to derive, statistically, the
equations of change for a system of molecules. In the development
of the equations, expressions for the electromagnetic contributions
to the energy and momentum densities are obtained. In Chapter 1,

a general equation of change for any macroscopic density is
developed. This equation is then used in Chapter II to derive a

set of Maxwell's equations for the macroscopic electric and magnetic
field densities. (Maxwell's equations are a necessary addition to
the hydrodynamic equations of a coulomb system.) Finally, the
equations of change for the mass density, momentum density, and

energy density are derived in Chapters III, IV, and V. Wherever




it seems possible in these derivations, we interpret the quantities
that arise in the resulting equations in terms of known physical
entities such as current density, and polarization density.

Non-relativistic, classical mechanics is used throughout this
work. In many applications, relativistic effects are completely
negligible. These effects are only important in extremely high
temperature plasma such as that existing’in stars. For a system
of molecules, of course, a classical treatment is not adequate.
However, a quantum mechanical treatment would probably not alter
the equations of change but. only gffect the detailed expressions
for the dénsities. Since these expressions are not evaluated in
this work, the quantum mechanical developmgnt is reserved for

discussion at a later date.




I. THE GENERAL EQUATION OF CHANGE

In this chapter we use statistical techniques to derive a
general equation of change for a system of N charged point
particles. These particles may be considered as representing the
nuclei and electrons in a real system. Although the molecular
properties of the system do not concern us in this chapter, for
convenience in succeeding chapters, we make use of a double
subscript notation suggesting that the particles are clustered
into groups representing molecules and ions. Assuming that the
particles obey the laws of classical, non-relativistic mechanics,
we begin by writing the classical equations for the microscopic
interactions of the particles and the electromagnetic fields that

they produce.

1.1 The Microscopic Equations
Newton's equation of motion for particle i of molecule or
ion k is
A
d ¥y,
M*

where Awsh; is the mass and _r)ﬁ is the position vector of

) (1.1.1)

= m

particle )u . The force, F’u , on particle }QA is given by

the Lorentz expression,




fﬂu: L Ei (Y -)""é"(‘ihx 5“(\:@) ) (1.1.2)

where e)“ is the charge and B‘L is the velocity of particle }L« s
M M
and where Eh‘(!_k)ls the electric field and B. (_V,‘h‘s is the magnetic
field at particle /Q?A produced by the particles and by the external
R M
sources. The subscript ,Q'u on EL indicates that the coulombic
effects of particle ﬁu are not included in the expression for the
electric field at particle }b«- . This point is clarified in
: . Mo
section 1.3 where the expression for EL is developed.

Maxwell's equations for the system are

) .
v X Eﬂ(r-)+—<‘-: B.M(ES‘—' 0, (1.1.3)
% . Eﬂ(f)z 0, (1.1.4)

EXEW)-LE =T Tepuy £(om-r), 0

T EM(g): + %Ch‘- f(ﬂu"ts ) | (1.1.6)

where f(!’_) is the Dirac delta function.




The first two Maxwell equations, (1.1.3) and (1.1.4), are

- M
satisfied by the following expressions for B and E :

()= & xAC

and

A (53 , (1.1.8)

where A 1is an arbitrary vector function called the vector potential,
and @ is an arbitrary scalar function called the scalar potential.
Equations (1.1.7) and (1.1.8) are dquivalent to (1.1,3) and (1.1.4)
and serve as partial definitions of A and ¢ .

In the next three sections, we derive Hamilton's equations for
the system under consideration and show that these equations are
equivalent to the microscopic equations just given. The treatment
of these three sections follows closely a similar treatment of
Heitlers. It is included here for the sake of completeness and to

introduce the notation involved.

1.2 The Hamiltonian of the Particles
We first seek a Lagrangian of the system which leads to a set
of equations of motion equivalent to (1.1.1). From this Lagrangian

we obtain the desired Hamiltonian for the particles. Substituting



(1.1.2), (1.1.7), and (1.1.8) into (1.1.1) we obtain

, du
Alnd+L]u kx(ixxx(.») =y, —== M}“.

(1.2.1)

ol

A
Yy, ¢

The notation, (Ph" (ﬁh‘) , represents the potential, ¢(!‘.\ s
evaluated at the position (_V‘_ = !MS of particle ﬂu , but excluding

the self-potential of this particle. The total time derivative of

A_ (ﬁ}k\] is given by

ALK A (ed g 2

m A STk A(U«.S ] (1.2.2)

. [ ]
In the above equation, the ( \ above a function indicates partial
differentiation of the function with respect to time holding
constant only the parenthesized variables at the right of the

function, i.e.,

f(\: )-‘;‘_— 3-*-—” . : (1.2.3)

When there is no parenthesized variable, the variable held constant

is taken to be 'r .

v

Substituting (1.2.2) and the vector identity,

Uy gy x A ) = [ At~ A, 2
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into (1.2.1), we find that

349;,‘(%;.3 3 A (1) u 1 dA()
D Phs e Dy | K e Mt

=y A4k
=My, ;.(1.2.5)

Since d) and A are independent of HL_ , the above relations

may be rearranged to give

4 oL _of _ 1.2.6)
ot QUp, Ik

where

125 (bl - o o+ Fueatd) oz

is the Lagrangian.Equation (1.2.6) is equivalent to Newton's equations,
(1.1.1), and Lorentz's equations, (1.1.2), combined, and represents
a set of Lagrangian equations for the particles.

We now define, in the usual fashion, 3 meomentpm,

?'b

It

\:

P

conj'ugate to rl‘u . Notice that g}u is similar to the usual linear
momentum, /W\L‘ _V_‘_}u , for particle }u except for an additional
term involving the vector potential. Using (1.2.7) and (1.2.8),

the particle Hamiltonian, which is defined as



nguk.ﬁk—is (1.2.9)

may be written as

2

1“&, %;wm B -2 Al 4'%%‘ G (rn)., @210

Later, in section 1.4, it is confirmed that the above expression
leads to a set of Hamiltonian equations for the particles, which are

equivalent to Newton's and Lorentz's combined equations.

1.3 The Hamiltonian of the Fields

We now seek a Lagrangian and corresponding Hamiltonian which
lead to the equations of motion of the fields. From Maxwell's last
two equations (1.1.5) and (1.1.6), and the definitions of the
scalar and vector potentials, (1.1.7) and (1.1.8), we derive
differential equations for A and ¢ . First we substitute (1.1.7)

and (1.1.8) into (1.1.5) and (1.1.6). From (1.1.5) we obtain

%x(ar B _Q..p—— .: %g&kgkf(mﬁ—r)' _(1'3.1)

Then, using the vector identity,

._a-.. 0 _ 2 (2 1A
or x(ﬁxé "Z'E(@?‘AB‘ 2 = (1.3.2)

11
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we obtain one of the desired differential equatioms,

LA-2L L 202 AplplosT
C:LA or* +3.V: ar -A‘*‘o 4) -—é—;ekgkf(rk_h).(¥:3.3)

From (1.1.6) we obtain the second desired equation,

2" ; | |

Equations (1.3.3) and (1.3.4) can be simplified by use of -the
Cowlomb gauge. The vector and scalar potentials, A and ¢) are
only partially defined by (1.1.7) and (1.1.8). As a further part

of the definition, we require that A satisfy the relation

9

-A=0. (1.3.5)
or — |

i

With this choice of the gauge condition, (1.3.3) and (1.3.4) become,

respectively,

26 _ ym - 5
= geky_h{‘&‘h ‘_’.3 (1.3.6)

R _ _%W% e f(‘v_\h‘, -_\g) _ (1.3.7)
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It is convenient to separate A and ¢ , each, into an external
art, which arises from charges extermal to the system, and an
P P) g y b)

internal part, which is produced by the system itself:

A= [-_\f;')+,éfc)‘ (1.3.8)

6= 4)“\+ 0. (1.3.9)

e (e ..
The external contributions, Z&S and @ 33 have no sources inside

the system and, hence, from (1.3.5), (1.3.6), and (1.3.7), satisfy

the following set of equations:

0 ,A(e\: 0. (1.3.10)

D
\s

|
_Z" A T + = 0. (1.3.11)

(1.3.12)

or’

The internal contributions, thus, satisfy the equations,




AY= 0, (1.3.13)

TR 1 ,(A) 1 (&) .
= A -%é;—-f-z': 3349“ - q:;ﬂugu J’-’(zh‘-g), (1.3.14)

and
* @) |

Equation (1.3.15) may readily be solved, to give

A :
(p( )(g).—_ Che (1.3.16)
! eac-tl
Thus, in the coulomb gauge, ¢ is expressible solely in terms of

the particle coordinates.

We now return to (1.3.13) and (1.3.14) to derive a set of

Hamiltonian equations for A For this purpose we expand Au

in a series of orthogonal time independent functionms, A’(v)

In order that there be an enumerable number of such functions, it
is convenient to restrict the discussion to a system enclosed in
a cubical box of side length L . Since the system as a whole

, | ®)_
has no net charge, we take the box large enough that ¢ =0 on

its surfaces. We further assume that A() is periodic on the

. ‘(h
sur face of the bpox, i.e. that A and’its derivatives have the
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same values at corresponding points on opposite planes. The A, are,

then, defined by

(S
0°A,  cwr (1.3.17)

LA = 0, C(1.3.18)

o if2Atm

J‘ - . (1.3.19)
)/A ) 1 >\.‘./(,(.

\
N
X

>

e

Equation (1.3.18) ensures that the gauge condition, (1.3.13), is
obeyed and (1.3.19) is a normality condition. Imn addition,9 we
require as a boundary condition on (1.3.17) that the A)‘ be
periodic on the surface of L3.

Since the é) form a complete set of vector functions, the
K

vector potential éy\ may be expanded in the form,

A“\(r,x): Z%,(ﬂ Aa('ﬁ)- (1.3.20)

Substituting (1.3.20) into (1.3.14), taking the dot product of

both sides with A, , and integrating over L3 , we obtain

M
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0,
vM
if):
1>
y L )

|
\:)>
S
is
l
™1
o0
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>
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>
QL
\s
+
ST
QU
=
*
<

T _
S Zeu!g'LA#J,(EL;-D)Jr. : (1.3.21)

The first term on the left of (1.3.21) is easily evaluated from the
normality condition, the second term is evaluated from (1.3.17) and
(1.3.19), while the term on the right is a familiar delta-function
integral.v Finally, the last term on the left is shown to be zero

as follows:

>
P .
s
l

1A .
2. ¢ Ade =1 ¢IZ. A v

or =m oY —um
2 it (s
~ [ A& A .
= (49A,- ds . -
Ny

The second term in the first line of (1.3.22) is zero due to the
gauge condition, (1.3.18). The boundaries of the system of particles
may be taken as the integration boundaries of the surface integral

in (1.3.22). Since the system is charge neutral, i.e.

Ze}u:O, | 1 (1.3.23)
PN

(~ ‘ :
¢> is assumed to be zero on the boundaries of the system. Hence,

the surface integral is also zero, and (1.3.22) may be written as

S‘a(t,(/-)

Ar 0.
(1.3.24)
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In view of the above arguments, we may write (1.3.21) as

%*+ w; %F%:Z%%AA (rw, (1.3.25)
i

(where for convenience we have changed the index /u to A )
The equations (1.3.25) are equivalent to Maxwell's equations
and are also analogous to the equations of motion of a system of
independent forced harmonic oscillators. Carrying this analogy
further, we may take as the Hamiltonian for the fields, the

Hamiltonian of the equivalent system of oscillators, namely:

M= -y Sy ) g A, (e g ) (4 + < )
% A ?
=Y ek Al DR ),
e - * |

(1.3.26)
where /to) is the momentum conjugate to %7\ . In the following

section, we confirm that the above Hamiltonian leads to a set of
Hamiltonian equations for the fields. In view of the analysis in
this section, these Hamiltonian equations are equivalent to Maxwell's

equations, (1.1.3) to (1.1.6).

1.4 The Complete Hamiltonian and the Hamiltonian Equations of Motion.

A comparison of (1.2.10) and (1.3.26) suggests considering the




particle Hamiltonian, o}iﬁ , plus the last term of the field

Hamiltonian, w , as the Hamiltonian,

i el NE
Nz%tm; Ph - = Al + _%41;(%3
Pay (e %),

for the complete system (both fields and particles). The first

(1.4.1)

b ( ) . . - .

term -~ = U. . in the expression for is alread
v ¢ —L‘A k) . P : M : Y
included in the first term of the expression for Ml‘ ; hence this
term should not be repeated in the expression for H

Since, from (1.2.8), the first term in (1.4.1) may be written

18

| (e | '
as ‘I/M}u u}u , this term is the kinetic energy of the particles.

The second term in (1.4.1) is the coulomb potential energy of the
particles, and the fingi term is the energy of the electromagnetic
fields.lo.‘, The’refore,. W , as given by (1.4.1) is the total energy
of the system. However, the only true criterion for deciding whe:ther
(1.4.1) is the correct form for the Hamiltonian of the system is to
ascertain, as is done next, that ﬁ"r yieids a set of Hamiltonian
equations of motion consistent with the microscopic equations of
motion for the system.

From Hamilton's equations of motion it follows directly that

;,:9%(‘
“/'LC ‘9"‘2—&;’

or

!),;‘-‘——”‘;;; pk—%é(r}u\ ) (1.4.2)



and

‘m% 4’;(‘%3

Al( m\]

Uk - ek By () ;

(1.4.3)

(1.4.4)

(1.4.5)

19
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Equation (1.4.3) with a bit of rearrangement can be shown to be

identical to (1.2.5), the particle equation of motion. 1In addition
(1.4.5) can be seen to be identical to (1.3.25), the field equation
of change. Hence 1{ in (1.4.1) is the Hamiltonian of the complate

system.

We now rewrite the expressions for the electric and magnetic

fields in terms of the canonical coordinates, %) and ,faa . From
(1.1.7), (1.3.8), and (1.3.20), we have
M 0 0 (e)

B“(e) =) gae X AL+ S x A(x)

A

G
?—z %%—a—%xéa(rh B (k) , (1.4.6)
A

=L LA .

Notice that while the magnetic field depends only on the field
coordinates %7‘ , the electric field depends on both the %7‘ and
the particle coordinates rh . The part dependent on the _Y_‘L‘ is

the electric field in a stationary system, while the part dependent on
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the %)ldescribes the retarded potential and the radiative effects.

1.5 The General Equation of Change

The phase space of the system is an orthogonal, multi-dimensional
space consisting of the position and momentum coordinates of the
particles and the field oscillators. That‘is, the coordinates of the
phase space are the set, (¥ )_P’“ , %7\) 402 Y. If the point in
phase space representing the state of the system at a given time,,j%,
is known, we can, in principle, find the point representing the
state at any other time by solving the set of Hamiltonian equations.
From this information, the value of any property of the system at
any time may be calculated.

However, it is, of course, an impossible task to determine at
j: the positions and momenta of all the particles and field
oscillators or to solve a set of Hamiltonian equations. It is
fortunate, therefore, that for practical applications detailed
information about the exact state of the system is unnecessary. What
we want to calculate are the macroscopically observable properties
of the system such as the electric field, produced by the system at
a point in space. For this purpose, we consider an ensemble of
systems. This ensemble is represented by a cloud of points in
phase space, the density of which at‘time, 76 , 1s proportional to

{(N\* (r}u, p}u, %7*; 43) , the N particle distribution

function.




_F(N)*

The function, 5 1s normalized such that

[‘F(N)* ]1" P dpy. 0‘%2 olfa = | (1.5.1)
A

The value of this function at a point in phase space is the
probability that a system chosen at random from the ensemble is in

the state described by that point. The average or macroscopic

22

X% *
value, <3 >‘of any function, 3 , of the coordinates and momenta is

S5 P o

A

For the macroscopic functions of interest, 3* has no explicit

time dependence, i.e.

2 a*
——3_ —1 0, . (1.5.3)
and depends on only one or two variables, of the set,

. . ) . Hence, it is possible to write (1.5.2) in
(“&)‘P}M%M A ’
terms of reduced distribution functions involving only those

. . * 11 . .

variables on which 3 depends. To obtain expressions for the
macroscopic variables, therefore, we need information about only a
small number of particles or field oscillators. Although, in our
work, we do not develop expressions for the macroscopic variables,

we do obtain expressions for the time derivatives of some of these

variables in terms 6f other macroscopic quantities. In the remainder



of this section, we show that this may be done without explicitly
evaluating the integrals in (1.5.2).
12 _)c(N
It may be shown  that the function obeys an equation of

change known as the Liouville equatlon, which may be written as

B-P‘"”‘ (N)*
e + A F 0,

(1.5.4)

Vi
where is the Liouville operator,

SSPRW D o 9 oM D
N._ . + 0 _7H o (1.5.5)
;gﬂiaq‘. 2Ly, Oy Z B TNETH o

From the Hamiltonian equations of motion, (1.4.2) through (1.4.5),

it folloﬁs that this operator is

N= ;u -~+; ey QA Ly _e 9%(EU 2
) ;T Ups —Ef D | e

+z'{°7~—9%; +ZZ Sk Y, - ——-a( \ D—E\

(1.5.6)
It is convenient in the later discussion to use LJ]& rather

than *22u as an independent variable. The distribution function

in this new coordinate system is defined by

{(N\: J"F(N)*, (L.5.7)

23
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where
(% Pay b %) _ T
EIET NN b |
is the Jacobian of the transformation (Kk}?}‘) /{da) %A) —--»(r#":‘.k"f@,,q ).

Substituting (1.5.7) into (1.5.4), we see that the new distribution

(1.5.8)

function satisfies an equation similar to the Lipuville equation,

a-F( + A_F(N) (1.5.9)
x- . .

where [S is the operator in the new coordinate system,

A= ;4& T ,—;;f’-‘- E, (s)+ 2 ua X B (g 2

oUp;

_?_ Ck * 0
+;E/ié%3%x+2 ;—:‘9 A( ) wﬂ%x;ﬁ.

(1.5.10)
The derivation of this expression for the operator is discussed in

Appendix 1.Al..

Finally, we derive an equation for the time derivative of the

ensemble average of any dynamical va;:iable‘ 3(-\'-\’:“ "—“u ) 12 ) '{92\

where

(2.4, g, 4’*)‘ 3*(%1%» G fﬂa) 1.5.11)
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This is the general equation of change.

From (L.5. 1), (1.5.7), and the well-known integral transformation

(N\

relation, we write the normallzatlon condition on ‘F

(’C(N)T””w‘“w“a = (JF‘”)*' T diy g, dgp = L

x (1.5.12)

Similarly, from (1.5.2), the ensemble average <Cj*> may be

written in the new system of coordinates as

L " u = 1.5.13
<‘j >:(33"“F JEJ!&A.&;A%AJFA—<3> y  (1.5.13)

where

<ﬁ>::’-' (“j‘F(N)Eo‘Ek Aduy,. 0‘12 al’l“a , (1.5.14)
A

The time rate of change of <3> is given by

D[y 2 Tty

== (3/\ 'F(N)Hd‘-’k@“i&x”%a#a
= (_F(N)A 3 :E‘ ol.'fjk- AE&; 0(,32 V%‘ (1.5.15)




In writing the first two lines of (1.5.15), we use the explicit

time independence of g {;ee (l.S.BE] and the equation of change
(N) .

for -F , (1.5.9). The last line of (1.5.15) follows from the

property that JAL is skew-symmetric with respect to integration

over phase space (see Appendix 1.A2):. The general equation of

change may thus be written as
9<ﬁ> - <A ﬂ> (1.5.16)
ot ' |

Starting with Newton's and Maxwell's equations, we have
derived the Hamiltonian for a system of non-relativistic point
charged particles. Using this»Hamiltonian; we have derived a
Liouville equation for the distribution function of the system in
‘phase space, and, from this, a general‘equation of change for the
ensemble average of any dypamical variable. 'This general equation’
of éﬁange forms,‘iﬁ the succeeding chapters, the basis of the
derivation of the macrqscopic Maxwell relations and the magnetohydro-

dynamic equations for the system.
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‘ »*
Appendix 1.Al: The Transformation of A to A .

We discuss here the transf‘ormation of the Liouville operator

*
A in phase space, the space of (V'kt Fh‘ ,%2,,{0 ) , to the
i . W
operator A in the space, ("’M«}&, 17‘) {Aa)‘ |
The equations of transformation from the stared to the unstared
coordinates are [see (1.4.2)]
V‘*

) (1.A1.1)

"}u
Y= /TLL (?}:" %‘ A (‘.'j;)), | | (1.A1.2)

%')«:' (5;‘ 3 | (1.A1.3)

and

/,07«" ’foaf (1.A1.4)

The general equation for the transformation of a partial

derivative from the stared coordinates to the unstared is

ap\*_.z e Q/D\ (1.A1.5)
* ——ﬁ' N, ? o




whe[e J\ ll[e I]ll](:‘ I()“ k |S a unct |()n ()l )( the
b] . A >
2
generallzed COOrdlnate in unstared space, and is a functhn

of 7(& , the generalized coordinate in stared space.

Using (1.Al.1) through (1.A1.5), we write

alz* 2%
z /gk af% z %@%

29, 3B,
-") arL 93; Z ]:21

= B”D‘ - Gk aé(fl«) BR (1.A1.6)
D0 MhC oLy 2Yp

) Y

!s

= 9 (1.A1.7)
opp Mk DUk
BP\* - Ch ("h. 2 (1.A1.8)
Bts* Mhe € "" BuL 35*
and

%%’:: %{‘/g' . (1.A1.9)
2 A

Substituting (1.A1.6) through (1.A1.9) into the expression

¥
for A. , (1.5.6), we obtain
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_@__ ehi DA (v 7
;;: o, YO Y YTV YT
2 2 A(m) 9 Ve bl D
AT O R DT N TR [T
- 0
Z ’{"Z/n\}uc LA 'h« EHL“"Z% 34
+z ——'U /V‘ )‘C«)i 9 |
Up:+ A A, (Lh A §a m ] (1.A1.10)

Combining the second and third terms of (1.A1.10) and referring

to (1.1.7) yields

R [a/_«(m‘u . pA(m] 39

b =Y

_Mc | oAk, T oY)y up.
> e < a )]
=0 e kX om X A W) 5
- Mc [HLX BM(V&J‘] auy,. (1.41.11)

From the fourth and fifth terms of (1.A1.10) and referring to

(1.1.8), we write

ek | 70 (vh) 2
Z b [\. BEpu B %Z’foz Ah(i}“) Iy (1.41.12)
2
=2 o EL g
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Hence, we may write from (1.Al.10),

_ 92 ek | A
A= . li;ﬁ‘ark*’;;\; [E;;(EJ..MZHLXE (%]'%ﬂ;

(1.AL.13)
+Z%a 3$,+Z[l\: & Up.* -a(% 1%;]3’% .

This is the expression for A .




31

Appendix 1.A2: A Proof that Jﬁl is a Skew-Symmetric Operator

From (1.5.9) it is readily seen that JQL is of the form

_Z))\ 2
A= o<97(°< , ‘ (1.A2.1)
S O

where the 7Q( are the independent variables,and Jlx is a function

of any of the independent variables except 7<X- Using this

form, we write

[(ae)g Ty = @ T 1T

(1.A2.2)

£
~Z( 3l )Hx,, Z{k%*‘"WJf

4

Using Leibnitz's rule, the first term in (1.A2.2) may be written

z o (ht® ) :zﬂmﬂ)\ £ TTd% A%,

0, 3 a1

8 A= ™
-Z[J)\ jﬂudp(’)( (1.A273)

= 0. o
Th £
e last step in (1.A2.3) results from the condition that

.vanishes as each independent variable approaches the limit of its

range. Using (1.A2.3), (1.A2.2) may be written



(la#)y Tog=-T[h3L s

X
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ff’“”/\a Ta(j( (1.A2.4)

This is a statement of the skew symmetry of A .




II. THE MAXWELL EQUATIONS IN A MATERIAL MEDIUM

In the previous chapter, we defined the microscopic electric
E“aa B
and magnetic fields, L= and Y see (1.4.6) and (1.4.7)] .
These fields fluctuate rapidly with time; the measurable quantities,
however, are the macroscopic fields,E and _B_, obtained by
M M '
averaging E and B over a statistiéal emsemble. The fields, E
and B_ , are described by a set of equations analogoué to the
M M ’

Maxwell equations for _E and B_ {see (1.1.3) to (1.1.6)] .

These Maxwell equations, in material media, may be derived by

0 oE B

2
evaluating the quantities, ‘a";: 4 E R 57‘- . B , _B_F , and —a—-—— .

2.1 The First Maxwell Equation
The derivation of the first Maxwell equation is trivial.

Starting with the definition of E s
— ./44, (2.1.1)
B=B>,

we take the divergence of both sides to obtain
__B_. — 9 M ‘ (2.1.2)
orB= (B
B | |
or, since the divergence of D 1s zero see (1.1.4)],
_2_ . ~— (2. 1. 3)
r'B=0.

This is the usual equation for the magnetic field in a material medium.
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2.2 The Second Maxwell Equation
. A
We next consider -—SEE- . TFrom the definition of X , (1.4.6),

and the general equation of change, (1.5.16), we have

0B | B(ei |
702 XA + S N

where the last term is a consequence of the simple identity,

(2.2.2)

(9= B =1

Applying Maxwell's equations in vacuo to the second term on the right

of (2.2.1) and carrying out the 1\-operation [see (1.5.10)] in the

first term, we obtain

i_lé___ 2 P 0 e)
x —§<4%_3% 35 XA, ) = Cor XE

M
Now from (1.4.7), the definition of ° EE , it is seen that,

—

E={E*

(2.2.4)

~%§<|%‘V|> z<’f’a_4>+ E

1
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where again we use a simple identity,

<E(€3>—_ E(e\ ' (2.2.5)

Taking the curl of both sides, (2.2.4) becomes

«C—qXE 2</{aﬁar —*z> cbw E(e\ ee

Finally, substltutlng (2.2.6) into (2.2.3), we arrive at the relation,

(2.2.7)

L 08B 7
C =~ 3r XE,

Once again this is well-known as a Maxwell equation in a material

medium.

2.3 The Third Maxwell Equation

From (2.2.4), we write

(2.3.1)

2

v E=T ar ;;<|v v~|>+_"'E(e\

The second term on the right is zero by Maxwell's equations in vacuo,

and by carrying out the differentiation in the first term on the

right, we obtain

%‘E:%W%<eh(ﬁ(rk~—2)>, (2.3.2)
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where %<€h‘ J’(_V_)u—t)> can be interpreted as the macroscopic

charge density at the point _V_‘ .
In the above paragraph, we have expressed 2";,‘ ‘ E_ in terms of an

electron-nuclei centered density J’(.VI).‘-E) We would like, however,

to write 57; . E in terms of a molecule-ion centered density, J‘(r}rr),

where ‘\C,L is the vector to the center of mass of molecule L s

(2.3.3)

my,; “;u
022

and /W\h is the mass of molecule ,Dl,

(2.3.4)

A
To do this we expand each }L subscripted term on the right of

(2.3.2) in a Taylor series about KL s

Tep fx-> =Y Lendlen-5S
'h; N

(2.3.5)

+§<C'u K}u' 3%2 £ (Eh‘r) > + {%<€L B_’k B}u bVL 3’1 (-h >+ voe

Here

B)&: Yr-1y (2.3.6)




is the vector from the center of mass of molecule k, to particle i
of molecule k .

Equation (2.3.5) may be written in the general form,

(2.3.7)

(,«) ()
y -V‘ o™
O Y XL TN
where the superscript n's have the obvious meaning, e.g.

) \@ 3 |
"‘ﬁ; . (D_ij RLR,“R T‘g‘i% . (2.3.8)

Now using the symmetry of the delta function,

jatlc(’(rk-ﬂ: - —a%((’(l_rﬁ-g)’ (2.3.9)

we write (2.3.7) as

Z<Cbicr("‘}u‘y‘\> Z“__Jr_ 2 ("‘\("‘)Z<CL R J‘(rh )>(2 3.10)

We now define a tensor of order, M

(m\

(ﬁ\)
where E:C]u is the electric multlpole moment of order M of

o~
molecule k . This quantity, Q , may be interpreted as the

37

?;<C9u R( m \,.h_ )> (2.3.11)
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macroscopic molecular electric multipole density of order M . For

() 0)
example, gz is the monopole or charge density, gg , the dipole

density, etc.

Utilizing (2.3.10) and (2.3.11), we may write (2.3.2) as

(at)
58.. E= t+1rQ(°s+ Wrz —| (-D-A (a+1) Q""*') (2.3.12)

It is convenient to define the 'true' macroscopic charge density by

fe Q‘D) ;<€h J‘[Vh-v)> (2.3.13)

where

— .3.14)
C&:erb (2.3

is the charge of molecule k . It is also convenient to define the

electric polarization, jz , by

P S (__|)"‘ 6%_\"“{(,\; Q(/hﬂ) (2.3.15)
=0 = =

9

W

and the electric displacement, Lz , as

In terms of these quantities, equation (2.3.12) becomes
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% -[):‘i-Tl'Joe . (2.3.17)

~———

In form, this is a usual Maxwell equation for a material media,
but our definition of _E is a generalization of that usually given
since we include moments of higher order than the dipole. From
equation (2.3.17), it is clear that _D_ is that field whose sources
are the molecules of the system, in their ensemble averaged positions,
regarded as ideal monopoles or point particles. In contrast to D_ s
it is seen from (2.3.2), that the field, EE , has as its source the
"true'" particles of the system, the nuclei and electrons regarded as
point particles. From these arguments it can be seen intuitively
that _D_ is that quantity which E approaches as the average ipter-
molecular distance increases.  In dilute systems, therefore, Lz is
a close approximation to E; , and !3 in (2.3.16) is negligible. As
the density of the system increases, E has a greater effect, and
more terms must be retained in its series representation, (2.3.15),

to obtain accurate results.

2.4 The Fourth Maxwell Equation 3 E
To obtain the final Maxwell equation, we evaluate 71'—' .

 From the general equation of change, (1.5.16), and the definitions

of __E_ and .A. , (2.2.4) and (1.5.10), we obtain



(2.4.1)

Yo

OXEX NN

In Appendix 2.Al, the first term in (2.4.1) is simplified. If the
result from this appendix is substituted into the first term of
(2.4.1), and the defining equation for fi%’ (1.3.17), is

substituted into the second term, we obtain

o5 = ) Ceatf et - R‘la I

From a well-known vector identity and the condition that the

E‘e‘

(2 4 2)

divergence of éiz is zero [;ee (1.3.18{] , it follows that

2 (9 >_a 2 4) VB
XA — = (——' ‘A - -2 AN (2.4.3)
3” ar at or = 2?1 = ava‘

From Maxwell's equations in vacuo, it also follows that
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)
P/

= P ©) (2.4.4)
ox TS e

Thus, (2.4.2) may be written

0
)

|

i A

(2.4.5)
Finally, from the definition of _{i y (1.4.6), it follows that

0E o U |
== -q'ﬂ’;<€ug‘k<{’(ﬁu~!)>+ c%x B, e

where ;(%QLJ’(KL ’-)) is the macroscopic ‘total current density

analogous to the macroscopic total charge density, E<Ch f(!h"f))

Equation (2.4.6) is the particle centered equation analogous to

(2.3.2).
Again, as in section 2.3, we transform this equation to a
| D

molecule centered expression. To do this, we first evalute %—}— .

From (2.3.16), it is easily seen that

oD °P |

—_— - ag.,.q-rr__- . (2.4.7)

ot 0 ot

Substituting (2.4.6) into (2.4.7), we obtain
J ' 9 0P
BT epupbltyregrvar L
oxX Py
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Expanding §<Ckgbf(%‘r)>ln a Taylor series similar to (2.3.7), we

obtain

Z@umm Jy= Zﬁ‘é(@b-b Ry 3%%(" )

_3 i\m R uy £(t,-)
——z —/';T‘ g<¢b Uy, S(ep >
(2.4.9)

In section 2.5, we evaluate the time derivative of the

polarization, _E {see (2.5.9)] . The result may be written as

S oM ) -
%zgzo% (3£)( (ﬁz<ch‘ R)k Uk ( }’(t}; )>

= ("“"'\ Mt
_2-(‘:% T o.mZ(e,uu,‘ “}m-»b

M=o
(2.4.10)
The quantity,
,L_' ﬂhuh , (2.4.11)

is the velocity of molecule /p?. , and

Ry.
. U)ug iﬁ‘: = Up =Yy (2.4.12)
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is thevelocity of the "true' particle ,pk about the center of mass of

molecule )l . Substituting (2.4.9) and (2.4.10) into (2.4.8) allows

(2.4.8) to be written as

oD (-l) )
_.LH'T (9“) ();< R(l J’(E},;*.V.‘)>

ot m'

Ce M(‘)/o\ a(,,.) (/‘) (ma
+*WMZ;;W 35 ""‘Z<€ & q‘ k )(V“-v)>

(m+)
—LHTZ(/MS ( ._V;) (M'l\;<e,u uL Ef'{{’(r‘ >+c-—)< B

- S S e e
e ZZ@ Rw- 'Blﬁ-qt)f (bt )>] - <€h“AJ’ (ex-2)>

S ()" [\ A (m
H») g.;’., (z) -**Z@[ﬁsﬁ’% B £ )
ol m[? (~+) M )
o)t () el o)

(2.4.13)



Notice that the first term in the final expression for (2.4.13) is

zero when n = 0 and also when r = n; hence we write

2D (A1) mti| M
7_ Z mﬂl(a\r) (4 Zl<e)u[ R “n-4h K( !]J’/flr‘-'b

M=0

Mn\ A M1 -A)
TR RN Lt SN o OV

Ly et les)) ve 2 XB. "

From the usual vector identity,

9, (b ba)——-———x(axb), (2.4.15)

the identity,

(m) (™1
0\ mf o m)_ 2 (—Q—> ) o (M ]

is derivedywhere n is a positive integer. Also from (2.4.15), we

obtain
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2 \ (& 5 e
(—5—2‘\ NG sz_b,-— @w b %(nwc)]: ——EZ—X[{EB () q:(m)x ?.] ’

(2.4.17)
where /& is an integer such that O Em-| . Using (2.4.16) in

the first integral within the{ } in (2.4.14), and using (2.4.17)




in the second integral, we obtain

a D ') ~ 2\ () (m+1)
=47 3»* Je X Z %Tﬂ ( ) - Z@u Ry X £rae))

=0

i ) o B XUy Sl >]

- qTrZ;<th}ch “A-*‘)> +c XRB, (2.4.18)

For convenience we define a "magnetic multipole density",

(m)

T R sy,

and an "equivalent magnetic multipole density',

) m
M(MIW'L2<CL- _R_}u‘xy—l}. qf)(.'.”kt)> , (2.4.20)

M(Ms ' (/k‘
where ! v and \4u are tensors of order M . To interpret these
quantities, we regard the motion of the multipole moments of a

molecule as being separated into two parts: The motion about the
MU'"
center of mass of the molecule gives rise to the [ l{y, while the

) (ﬂ\l
motion with the center of mass gives rise to the Eﬂt4 . Under this

M "
interpretation, the monopole term, w 9is regarded as the current

—
———

density and is designated by the symbol,
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J= —'2‘:): ;<€h-‘ih£(kh'r)>. (2.4.21)

We further define a magnetization,

M

1

— Py

= . - M+ (1)
Z("‘J (2—:{) ‘Nlﬁ_(u gt rl\_’l__v (2.4.22)
=0

and a magnetic intensity,

HE B_qwm. (2.4.23)

With these definitions, (2.4.18) may be written

_9__:_:_47,—J+c-2—9r—xﬂ, (2.4.24)
ok - -

This equation is a familiar Maxwell equation in a material media
as are the equations derived in the previous sections. Tfle quantity,
4, is analogous to D 1in that it is the magnetic field produced by
the molecules regarded as point charges. This can be seen from
(2.4.24) since J [see (2.4.21)] is due to the motion of the
molecular charges assumed concentrated at the center of mass of the
molecule. By reasoning analogous to that of section 2.3, B is
interpreted as being produced by the 'true" point charges (the nuclei
and electrons). Hence, H 1is a close approximation to B for
dilute sy'stems, but, for more concentrated systems, H should be

corrected by adding to it the magnetization, M, which depends on
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L

the motions of the intramclecular charges. These terms are the Pq‘J

() -
and My | see (2.4.19) and (2.4.,20)] .
To clarify the interpretation of Eﬂ, we introduce the concept

of a mass weighted macroscopic melecular velocity, the familiar

"stream velocity",

ZQ’“}J#A’" (£h-t))
b

= (2.4.25)
% <ﬂh;z¢r(53f‘5j>
wasd
and a3 "Brownian moticn velocity",
Mz Uy (2.4.26)
rglMB
Using these definitions, 1_1,, becomes

--z
>

m E “X,ﬁ'*!-’;‘:“g" éz<€i& S:QBXE&J(ZL”K)>, (2.4.27)
- i

If we write F4 including only the terms to the second order in R}&

—

and Ezgﬁ , we cbtain by using (2.4.27)

e

w
M=My+ 5 g"'&gw%o(@“’xg)

+E ;Qk{gkx“fh“ CHUMEN IO

(2.4.28)



where

(

&?J = T'CTZ <CL &kXULJ(Eh'r)> (2.4.29)

1f we assume that the Brownian motion is small compared to the
stream velocity, and neglect the quadrapcle term, we may write

(2.4.28) as

Q) u) o 4
E‘f Q +_c];g XA (2.4.30)

a . . , 13
a familiar vesult for "constant velccity' cystems. If we assume
Y Y

further that the system is stationary, (2.4.30) becomes

0y
= 2.4,31
M QU ; ( )

——

. . 1 . 14
which is ancther familiar expression,

2.5 The General Ccnservation Equation

(™

We next derive an expressicn for -—-5’%—’ . For /)'\‘-"0j the
result is the familiar equation cf charge conservation. The general
result is frequently used in conjunction with Maxwell'’s equations.
Use was made of this general resuit in deriving the fourth Maxwell
equation in the previous section K}ee (2,4.10£I .

/ (=)

From the peneral equation of change and the definition of EZ 3

(1.5.16) and (2.3.11), it follows that
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(2.5.1)

From the definitions of J: and E&u , (2.3.3) and (2.3.6), we write

o My d

.a_r};jcr(rk_r): . J}JMJ’;A-LA} (2.5.2)
and

ORp _[p_m '}]: Iy

ory (‘CJ ) = | Eee
where J;% is the Kronkeker delta {see (1.3.19)] , and ; is

the unit tensor. Substituting (2.5.2) and (2.5.3) into (2.5.1) and

summing over l1j, we obtain

3 Q(,«) M-I ) 1op)
2:‘<% }u—}ﬁ —-(ﬁu NG 5D

PR m
- '“m".">;<€m otaedd e



where !#k and Lﬁb_are defined by (2.4.11) and (2.4.12), respectively.

Notice that (2.5.4) may also be written as

DY Len R €ti-v)>
ey Bl
(™)

:E<Ch Rd%k f(f}ul")>, (2.5.5)

When M =0 , the above equation reduces to the familiar equation

-+

of charge conservation,

ofe 2

j> , _ (2.5.6)

9x+3tg %

where j%_ is the macroscopic charge density and é[ is the

macroscopic current density [gee (2.3.13) and (2.4. 21{]
Furthermore, the form of (2.5.5) suggests the definition of two

new quantities,

3 = 3 e (e et B > s

oo m mt)
=y ) )"“‘Z@u Bl pact), oo
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If (2.5.5), (2.5.7), and (2.5.8) are combined with the definition of

E , (2.3.15), the resulting equation is

ok |
ox

/I‘g’ (2.5.9)

> |
<y
(f

This has the form of a "conservation'" equafion for the polarization,
P . In this equation, JP may be interpreted as a polarization
current and fE , as a "'source" of polarization.

We introduce in this chapter a device which we use throughout
this work. By multiplying the dynamical variables by a molecular
density function,_f(t},_-!), rather than by a particle density
function, f(ﬁ -“2), we introduce a set of macroscopic fields, Q and
‘ ‘j_,t:he sources of which are the molecules with internal structure
neglected. . We derive a set of Maxwell equations for these fields and a
polarization and a magnetization, - E and m s which correct D_
and _H for the internal structure of the molecules when this

structure is important. Finally, a conservation equation for the

polarization, B , is derived.



52
Appendix 2.Al: A Proof of a Relation Involving the A—A

(i)
From the expression for d) in terms of the canonical variables,

(1.3.16), we have, recalling the significance of the ( ) notation

[ see (1.2.3)] s

te_ Ty, 0 Sk
¢ —;r’u’ oL e -vl

(2.A1.1)

=Ve, Yy, - 0 l
: —h Oy lepi-2l

(A)
Substituting (2.Al.1) and the expression for A in terms of the

) (4)
canonical variables, (1.3.20), into the equation relating and _A’

(1.3.14), we write

L& A (s)-q 2 AL
; é%aéa(‘) %A“‘B"‘;T +‘ét .6;,‘.1_"_.'

GTr
— —?;@hg}uJ(rk~E) ‘ | (2.A1.2)

Finally, substituting the defining equation for A% , (1.3.17),

and the equation of motion for %;\ , (1.3.25), into (2.Al.2),

we obtain

2 0 1 i,
chu Yy, '{55,;5? -t ¥ };Aa(’fk) Aa(ﬂ]: MW});C)K uy, Slent),
5 | '

(2.A1.3)
which is the desired result.




ITI. THE EQUATION OF CONTINUITY

In a fluid, the macroscopic quantities of interest are the mass,
momentum, and energy. In the remaining chapters, we derive the
equations of change of these quantities. We find it appropriate, as
in the previous chapter, to define the macroscopic mass, momentum,

and energy densities in terms of molecule centered integrals

53

containing f{th*ﬁ) . The particular equations of change are obtained

by using the general equation of change, (1.5.16), to obtain the
time derivatives of these densities. 1In this chapter, we obtain, in
particular, the equation of continuity.

A molecule centered macroscopic mass density is defined as

Sttt
) 3

To obtain the conservation equation for JD , the general equation

of change, (1.5.16) is used to find the time derivative,

P
—a—ﬁ—-;@wm-rb

S g e 2 ooty
o 4

Using (2.5.2) and summing over ﬂ , it is found that



3 |
‘a"f:§<”’“ﬁ U 55, ¢ (11-2))

-7 é??s Z CORICe5) (3:0-
SR

The quantity on the right of the last equation is the macroscopic

molecular momentum density, in terms of which the stream velocity,

/Y, is defined [see (2.4.25)} s

(3.0.4)
f/}f = Z</’“}Q l:{.[,z f([h-b >
Hence (3.0.3) may be rewritten
{ _8_ oM = 0. (3.0.5)
ot o §
This equation of continuity for an ionized fluid is the usual

. o .15
equation of continuity for a non-ionized fluid.
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IV. THE EQUATION OF MOTION

In a manner analogous to that of the previous chapter, we now
develop an equation of change for the macroscopic momentum density,
f)ékf . This equation of motion contains force terms arising from
the electromagnetic properties of the medium. In the usual treatment
of molecules interacting according to a potential, these force terms
are expressed as a collisional contribution to the pressure tensor,
and this contribution is obtained as an integral involving the radial
distribution function. In the electromagnetic case, hecause of the
long-range nature of the coulomb potential, this integral diverges.
The essential problem of this chapter is that of separating the
effect of the electromagnetic. forces into short-range terms leading
to a non-divergent collisional contribution fo the pressure tensor
and long-range terms involving functions of the macroscopic electric

and magnetic fields introduced in Chapter II.

4.1 The Time Derivative of the Momentum Density

As in Chapter III, we take the time derivative of the macroscopic
momentum density (3.0.4),using the general equation of change,

(1.5.16), and obtain

oppr P

(4.1.1)
‘ § pmy ~E- A Ml N[, 2 -
< k i“e- Eu ( ')+c Up X B (fu) '3—;_5& 4‘(‘—’). L’)>
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Using the previously derived expression for J‘(Vh'*) [see (2.5. 22]
and the definition of Lih_, (2.4.11), we can, upon summing over ,Q,
bring the first term on the right of the equation to the left, and

write (4.1.1) as

af =, %Km uy Uy, $(en-t) )
- ; @ [ (1) + & Upx () i),

We Consider first the second term on the left of (4.1.2) and use the

(4.1.2)

definition of /‘Y)L’ (2.4.26), to write
ZQ»«,{LM,L&h J‘(h,,—r)>:§;<m apwpd (=)
5;{ g A 4 (e4-2) D o +Ar</mkka Jles-x )>J

AN

Since, from the definition of /}_/'y2 ;

§</M}z /‘[AJj(K&-K‘§> =0, (4.1.4)

the second term on the right of the last equation vanishes. The

(4.1.3)

first term,

4£-KE Z</”‘A’Yh A}, J)(!A'Z‘)> \ (4.1.5)
k
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is the usual kinetic contribution to the pressure tensor.

Substituting (4.1.3) and (4.1.5) into (4.1.2), we obtain

oF L 3 )
TRRETR R Ry

¥y <o (&5 (ad w2 upx Blusd [ 0049,

The last equation, except for the last term on the right, is

(4.1.6)

the usual equation of motion of a non-ionized gas at low density.
The last term, then, describes the effects of external fields on
the charged particles and the effects of the collisional transfer
of momentum through the interactions among the particles. To

examine this term in more detail, we write

};@;[Eﬁ (g} +L U X E"‘(m)}j’(g”kbz_- X+A, G1D

where

_AE%@&; £y (o) +E W XB)dlyr)>  @ro

A= <epu. [Eﬁ: (!)u)-_E_pu(!k\]-F ;-up,‘x{g" (1) - B (ftu)] { (‘:;L—tb'

(4.1.9)
In (4.1.8) and (4.1.9), B(_‘fh‘\ls the macroscopic magnetic field

density at KL; as defined by (2.1.1) and Eg}u(tﬁs is the macroscopic
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electric field density defined by (2.2.4) excluding the effects of
particle Jki.

Ey )= €0k € (5, 90, ) Ty o g
=B )
-< E’J Im~r lz '“‘Z ’f"x-—a(y >+ (ex(%)

U]*

(k. 1 10)
where the (/ ) on the brackets in the second and third lines of
(4.1.10) indicates that the average is to be carried out over the
primed variables only.

From (4.1.10), it is clear that we may also write

<ZC% —Bu‘ "Ckm i LZ’{" A (_h‘>+Ele (k).

v, = t/jlz leg;- *"&u\z

The first term inside the brackets in the above equation is a

(4.1.11)

double sum over all the particles, while the second term involves
only one particle. The first term may, therefore, be expected to
be larger than the second by a factor of the order of magnitude of

N, where N 1is the number of particles in the system. Thus, since
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N 1is taken to be large, the second term inside the brackets in
(4.1.11) is negligible. Consequently, using the definition of E(!—)u),

(2.2.4), we may write (4.1.11) as

—E-k(!h‘): E_(‘ik>, | (4.1.12)

Thus, from (4.1.8), )__(_ may be expressed as

>_<_=g<epa E () Ux B[ flgr)> ey

Substituting the definitions of _)_(_ and A into (4.1.6), we

j—)

obtain for the equation of motion

dpr |
. - _0
3£ Tor fEEE T a TR S

From (4.1.9), A is seen to be dependent on the difference between

(4.1.14)

the microscopic fields,)E,p/:and B'/;and the macroscopic fields, E}b{
and _B_ . This difference is appreciable only for dense systems.
For low density systems, then, _>_(. is the primary contribution to
the force term in (4.1.14). Hence, because _>S, represents the
interparticle interaction when the interparticle distance is large,
)_(_ is the '"long range" contribution to the electromagnetic force.

The term A , which is a correction to _>_(_ when the interparticle

distance is small, is, consequently, the '"short range' contribution
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to the force term. More is said about the interpretation of zf&,

at the end of section 4.2,

4.2 The Short Range Term

Next we consider the short range term,_éé , in greater detail.

For this purpose it is convenient to define a double average of a

/ /
cnceion, (%4, U, o, e Yo ), 0

(primed and unprimed) of independent variables as

<< ﬂ>>§ N F(M(r"ﬁ)gk)%m/i/’a) ‘F(Ns(fiu)gfﬁ)%;j ﬁ\)
X E; dry, dY), A"B‘a 4{‘2 dvy. Jg;ﬁ,,l?; 0%' , G.2.1)

(N
where-‘f see (1°5D7i] is the distribution function in the

phase space of the system. In view of the normalization condition,

< 1> = 1[see (1.5.12)} , we find that

(4.2;2)
(83 e, B, ) >+ (e Bhis o, = e oy = Kt DD,

Using this double average notation, we write from (4.1.9) and

the definition of _E_)u(‘ﬁ),;) and _E_f,;(!%;X{see (4.1.10) and (1.4.7)}

- 4.2.3
é ._c.+——A--M' (6.2.3)

The first term in (4.2.3),
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A= Ty it gy, «

- e

is the coulombic interaction term. The second term,

ét~4“'::"-‘- -%;<<Cki [ET('-”}J - E::_T/(ZM\:( (e~ \r)>>
+—('.: ;<<Cﬁu Uy, X [B (t,.;)-g'(r;u)]{(rh—r) >> ,, (4.2.5)

T
where E (r}‘;)is defined by

E oy Y(:/f"a A, (% (4.2.6)

is the transverse or retardation correction to the coulombic
interaction plus the short range magnetic interaction term. For
the non-relativistic systems we consider, the particles have low
velocity and these last effects are small.

In casting A into a more significant form, we first treat

the coulombic term. For /Q-'}',nl , a Taylor series expansion results in

-Y:L—'V'}a _ Y- +R 0 (!‘k*k’z
L T A Rl A2

? Ky -2, , 8
+ Ry Bm(m- | >+Bﬂugfj'arl vy
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which, since

Yoty o L __2 | .2.8)

| =7 2vp bt

may be written in general as

\:}u“ Ly (/‘"ﬂ) (A\ 2 (m+)
ki H X )( \ | (4.2.9)
| ¥ -‘fﬁlz ? Z _/'Sl ‘ % 0L, )ZL-E,_) (ﬂ#ﬂ),

Mm=0 =0

|- Lo

Using (4.2.9), we write the first term of (4.2.3) as

—”2};(&’“%5}\’; v‘f |:k —ﬁ'z J)(rh >>>

oo J )
() (A " (_2_)( |
+ Z;<<Cfucﬁ l (-2 [ @;3 - 2) Jea-tl

=0 =0
(4.2.10)

- a 6“*6
Vlf: ) KU-L) (m )(ag;) lrwr;l]J rhvr>>>,

—

The second term in (4°2J10) involves a sum over k and ,Q whereas
the first term involves a sum over k only. Therefore the second
term is larger than the first by a factor of the order of magnitude
of M, where M is the number of molecules in the system. Since M
is assumed to be large, we neglect the first term of (4.2.10) and

write

S " (m+)
A SN Gt e
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where

i) R i

AN (/*-\ | |
R)fm =4 (Jz:”)J”(‘"'“) > (4.2.12)

(m)
The quantity, E! (f,!)is related to the pair distribution

=

ls
|§

I

function. If we look at the zeroth order term of (4.2.12), we obtain

I_\f\(r',tﬁz- ene, & Slae )0 leg-2) - £fey+) 8 (e 1)),
¥ '

(4.2.13)
This is closely related to the difference between the pair

distribution function and the product of single particle distribution

functions. The higher order terms describe the effects of molecular

structure.
(™
. . s : Ny\’”
The following relation involving the /¥ Ci,r ) and any tensor,

(»

_{

, of order n is useful:

\
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(m (™ Mm "“ ) n v
N TS ;@eﬁ[ Wt
_‘R(f'\/&\ MJ(“}; ) (,, _,)]),(ﬂl_ ()
A (A
= mZ«%C [Kl % £lepr )8 (e, +)

(1) (/h/z) - (o NG ~
g n,ﬁ aeeees)] > O T

( (/“ -] (- -4 (ﬂ\
Z /l! _ﬂ” ; < { r»)y(rh~r’)

m
N=0

(m-2) /(1)

- Sl ol ,,)]» St
M -( -A) ea) i
R e N

“RyOL gl ) oL -r’)]» AT

Y w )\
= (-l)/“ N (£F ) . );EM), (4.2.14)

—
—
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The second line in (4.2.14) follows from the first line upon

interchanging & and M-A , which is equivalent to reversing
the order of the summation over . . The third line follows
from the second upon interchanging the order of factors in the

(A (2
supervector, E’k K . , a valid operation when the supervector

multiplies M times a symmetric tensor of order M . In writing

the third line we have interchanged the primes on the variables of

integration in the second term and made use of the identity,

("l)ﬂ‘:‘: (-I)A (-l) Um)?—, (~1) " (~/) (4] (4.2.15)

Finally the fourth line results from interchanging the dummy indices
/27"" and ﬂa‘ .

Now we are in a position to write  from (4.2.11)

S My n 9 U“*'l I ) , )
AC: (Z Q—‘ \(g)y) L~ (22, IE"-!T ((‘(r "f)pl‘: Ar
m=0
= , a (/hﬂ)
‘::.--( ;&(ﬂ\vz)rﬂ) ,(m)» ZV"’ _'?{?_,_ J‘{rll‘h) o(!',ol!”

(4.2.16)
od () W m 9 (M.H) ‘ 4 | |
=\ [ 0w (55 iy o) - ol

-.0 -

In going from (4.2.11) to the first line of the above equation, we

/ "
have interchanged the dummy variables r and Z‘ . In writing



the second line use has been made of (4.2.14) and the relation

( : )(MI) = l)(M‘){L)(M') ’ (4.2.17)
|~ oL .

¢’ | '-¢

Finally, we obtain the last line of (4.2.17) by adding the first
line to the second and dividing by 2.

[ /) /
Next we expand J(t'r)‘ngiﬁin a Taylor series about k p

o p atl) _éz_ (a+1)
lei-e) - (e~ )= "ZOCTLW (r -ry (at) (92) L(r-) :
42

, (4.2.18)
and write (4.2.16) as

had | (» ) (m+)) |
- | s opa\ (M) [ O —
A=-%) (ol (ﬁ (v) Mar”) v

i
|
»|—
Me
:fi{
+|—
'S}
nleﬁ
N——
N
S o
N N
s
——
IS,
]
is
>
S
o~
N
+
2
/\
s
Is
N

.(”‘) (?ﬁ\(mu) | dl‘l (4.2.19)




/
where, in writing the last line, we have integrated over r and
A v\//
have then dropped one of the primes from Y
We now define the collisional contribution to the pressure

tensor as

5\,

45 o
¢—— 123_6_ {3;« ( Z‘( (+) (_)!‘) (2 VG WJ

(4.2.20)
Using this definition of & , we write from (4.2.19) and

(4.2.3)

H’l\)

A= - é,ﬂ'ém . | (4.2.21)
The term, éM [ see (4.2.5)}, contains the contribution to the
short range force, é , which, apparently, cannot be written as
the divergence of a contribution to the pressure tensor. As
mentioned earlier in this section, éM depends on the transverse
fields and retardation effects, while éc and, consequently, é4’
depends on the coulombic effects. When the interparticle distance
is small enough for é to contribute significantly to the
electromagnetic force, the coulombic effects are more important
than the transverse field and retardation effects, especially for a
non-relativistic system; hence, for most applicatioms, éM can be
neglected in comparison to '—57 ' éf

As a further aid to understanding the '"short range'' nature of

67
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[5 , we now discuss the dependence of 4%¢ and {gpq upon interparticle
correlation. In the absence of correlation between the states of any
two particles, we can factor the distribution function into a

product of functions each involving the position and momentum

coordinates of only one particle:

‘_F(M( ,‘ﬂm X\_’E{ Py, Ug %X,H- (4.2.22)

Now, instead of the distribution function on the left of (4.2.22),
the distribution function on the right may be used in performing the
integration in (4.2.12). In this case, the primes on the 'Zl in

(4.2.12) may be interchanged without interchanging those on the rk_

The result is

) A et} Jn
-_—_:( ¢'e’) —92/&"()»\ A}lg«ekﬂ\' R, )%J‘(m- )¢ (‘“ "’)

P

—> - N (v’ W') —s 0. (4.2.23)

By substituting (4.2.23) into (4.2.20), we see that in the absence

of correlation between particles étﬁ vanishes.




A similar treatment applies to Z& From the definition of

( )and B(ﬁh}%ee (4.2.6), (2.1.1) and (1.4. 6)] , we wyrite éM

as {see 4.2.5)]
‘"'“"2<<@P» (#, {a) ) Olepn-o)>>

+—Lc, E <<Chi (‘67«“ ?;)ﬁkxé\-a(rﬁu) <F(r;,-z) )) (4.2.24)

Written in this way éépqis seen to depend on correlation between
the field coordinates and the particle coordinates; for if there

is no correlation, the distribution function can be factored into
a product of a function involving just the field coordinates and a

function involving just the particle coordinates,

-F(N)(-V]u,'ik) 9, /i”a)"" 'F;N)(L'L;,‘ik) "Q(“"‘ i”a) ' (4.2.25)

If (4.2.25) is substituted into (4.2.24), the primes on the field
coordinates may be interchanged without interchaﬂging them on the

particle coordinates; hence

8,7 ¢ ) Lenlhop)afnd a3
*‘"&24;«% (4~ %) upxA(5) $(u-2)3>

— ~4,0.

—

(4.2.26)

69



70

Thus in the absence of correlation between particles and fields, é§p1
vanishes as did 4g¢ in the absence of interparticle correlation.

This analysis gives another insight into the nature of the short
range term éé_. It also explains what we mean by the term
“eollision" in connection with a coulombic system. Since the
coulombic potential is a long range potential, one molecule is
always influenced by the other molecules in the system sufficiently
to regard all the molecules as being in continuous "collision'" with
one another. But we divide the coulombic force into two parts.

One part, 25, in (4.1.14), depends on the macroscopic fields. The
other part, éé , depends on the correlation between the particles.
It is in the sense of this correlation that we may now think of a
"collision". Two particles have '"collided" when they become
correlated. A particle has "collided" with a field when it becomes
correlated with one of the field oscillators. Since correlation is
short-range, the term '"collision' becomes meaningful. It is in
this sense, too, that éé is regarded as a short range collisional

force.

4.3 The Long Range Term
Now we discuss in more detail the long range force term, 2£

From (4.1.13) we write

- (4.3.1)

X=X

—~—

et Xp

5




where

2(—532;<% E (n) S(en-2) ) 4.3.2

is the electric term, and

Xo= J‘:; eg Yy, X B () P(rp-e)> @.5.3

is the magnetic term.

We treat the term AE first. Expanding E(!L) in a Taylor

series about !ﬂ'_ , we write

Xe Z /"‘Z<€’D’* R(m) (A){(BVL ('&]‘r("h"'
—.—_i ',;\'7_*};@).. el (532')(#)5 (x)

M=0
6 E + g(mﬂ) (1) (a%«)hﬂ\g st

fl

3

-

?Me

/

(m)
where fﬁ and Q are defined by (2‘3.13) and (2.3.11).  Since

—

Q is a symmetric tensor, it can be shown in a straightforward

e

manner that
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m
() 2 (» (_.'S/t l 3 (,.-A.) a (A\
Q (3] e =y o) e () S g o
f=0 -

Using this relation, (4.3.4) is written

se Mt (,‘vﬁ-n)! ? (mH1-n) "
KE:'-JDQE +22 (")A/z'. (/k+|-ﬁ-‘. (525 .(mH-/a}i(%) '(a\g(m—a)]g

M=0 2=0

=& ( H)'. 0 (~+1-4) _a__("} ,w'
= g ) )t -"‘*"”"{(QJ ne }]’5

) [( fg} e g""“)] E

0 m
2 3 (/“"‘N 2 \tm=1) (9)(") (m+)
= feE t+ 3¢ ZZ("B 2l (A«H'/Ll, (3!\_) (M*A)[av (4 Q\ E
M0 A=0
2 - j_(”\ 1)
"ia_f Y )" (F)f g ]:
/=0

(4.3.6)

where P is defined by (2.3.15) and f' is an operator defined by

_ © &, (Ml){ __é(h%) \ IND [ 43D
f::zz-l) T e o (5_:‘2-) Q|
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( (m=ay
In this definition, the operator \0L operates not only on

_[(a%ya\,(a) Q("“\] , ;but also on any function of Y on the
right of j?l. The symbpl j?tis used for the qﬁéntity defined by
(4.3.7) because of the analogy between this operator and the
polarization }3

We next consider the magnetic term, 2$13 , in (4.3.1) [:see
(4.3.3):] . For convenience, we first introduce the antisymmetric

tensor - B , defined by

————
a——e

é)ﬁﬁsze"‘m(*@)k , (4.3.8)

where is the Levi-Civita density. With this definition, it
p >

is easily shown that

(4.3.9)

i

B
Thus 2SB becomes

X BE -—'C:g;<cki li},,. ) % (r'b) <§\(!la‘?:)>. (4.3.10)

Expanding this term in a Taylor series about !Ja , we obtain

X="2 Z<€ RM ‘”"(H.) B () (o)
- J—}j 4T Gt B oo ~(2) ",

=0 (4.3.11)



In order to rewrite the last expression in a more significant
form, we first break QL‘ into its two components Ejl and T—% .
Then by adding and subtracting terms (the reason for the choice of

which will become clear later) we write

+-‘5‘27‘n"2<€k( - M {9 M(aan)mﬁ
Mm=0

% = M2 A +i ~
-5 D) < B ) (5]

m=0 =0

[ m /“)
LY Ay en st ()

m=0

=0
09 R mH) M)
CZ(/'\—"H“;<C}“ ;_ O(‘(v";r\ (m+1) (%>( _E
m=0 '
= ) A 79\
- cZ(Mu 1E<qﬁ E}{:‘*g&‘(‘(%sv}> ( +3/D!.)( _[_%_
A=0

_1 . (4.3.12)
SURCES
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In writing the last form, we have eliminated the zero subterms of
the first two main terms of the previous form and made use of the
identities, (2.4.16) and (2.4.17), to introduce the cross product
into these terms. In:%he third main term, we ha;e replaced ‘LGﬁ by

d Ry

T Finally we have used the definition of é[ (}ee (2.4.2117

to rewrite the last term.

Now applying a relation similar to (4.3.5), we obtain from the
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above
% M AY 9 (mA) 9(/&)
_ ? _A(mf). (___) - _5 [ mt)  (aH)
Xe= “élﬂx;;( oA o) - (3] 4 (o «2
2 a 9 (M) Mt
r3 el |x (B (e e
M=0
6o M ” (m~r)
[0
S (2
m=0 o=

(m+1)

) (‘3%' )m).m); <c'a j—%"—-é’ (r;;.‘-“) >]X 8

00 Mt (=1 n __9__ (/‘\+l~/t)
L Z/L.' (w+1-2]! (323

~=0 p=0

N (5'95)0?‘(4‘2@54 Q;L R (.M'J{(h ~r)>] XB

+1 IxB ., 4.3.13)

1N
c



In this equation, we have replaced '[3 by = C(B)and have simplified
(») ()

the first two main terms by the introduction of P4u and P4 see

(2.4.20) and (204019):] . he | ] bracket indicates that the

vector operation so enclosed should be performed before any other

vector operation in the term. The symbol, ) , does not

affect differentiation.

Applying the general conservation equation {%ee (205.55]to the

second term in (4.3.13), we write

o9 Mm A
_ L2 (-1) (/WV- (9 (n) \A [ ()
X = Tc ob X;; /Z..'(/h*'l*/l)’. oL , (m=4) (553 .(A)(ﬂ“ +M
= 9 a (M mt Mt
+Jc-‘_l(.a)’" S X (5?!) .MJ(_@L ),rg;”) X B
=0
S s () AU NSl
1YY ! j_) ™ (59,3 ), 287
c Al Z/M_A]! a—'t - ar
Mm=0 =0

- & (=) . (@_3""*"“‘

1D S S e Py R P
Mmoo A=0
2 \ 2t
'(M'.ﬂ)i ‘““”Zéfm Rh: et )>}" .
o .
+e ,f(ﬁw—a)l (295>WM)
M0 NF0 ‘ ‘ -

, (m#1-4) ( 9%‘_) (A);<CL U 4 R ):w((, V);V) >j

.,.éQ_-XE . (4.3.14)
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where the 2=Mt! terms in the fourth main term of (4.3.13) have been

included in the fourth main term of (4.3.14).

Next, we define several new quantities,

— ! 00 M (...])ﬂ- M‘H l a (ma) a>(/A " :
: c M= mtt (m+1)
(4.3.15)
— 00 ("')A(/Hfln ? () 2\ ) s
8 ’—'”Z}: i ~(35) A\ (3¢ "“’Q‘
=, M=o A=0 /’-.(/‘\‘H"AX. £ v Q y
o £~ (..;)" P (mn) (4.3.16)
jg".:: e ;0 AL (m+r-n)! / r
NEEAL - -
o (3’2} - <€lu‘:ﬂo. @ﬁﬂf(mwb (4.3.17)
A 9
and
—_ = Eﬂ:‘ (-l)ﬂ (l)(/ﬁ—a)
%n:; L, )2 oAy (0
("”\  (4.3.18)

m-v a Mmta
(o) (3-; MHI;QWML ¢l24-1))

As in the definition of L, (4.3.7), the above quanfities are

_?,) (mn)

operators, with the (ar

L ]

indicating differentiation not only

of the square bracket in the operator, but also of any function of

v to the right of the Operator The operators, '}ﬂ B 401 > and
L? and & , are related, respectively to the magnetization, t/l_ s
the polarization, E , and the polarization current, JP
Substituting the above definitions and the definitidns of E and M

‘»see (2.3,15) and (2.4.22)] into (4.3.14), we write
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..l_a_.aiia 1 2. ) 4
c ot THf XBt 2ok ‘(&rfﬁg XB+ ¢ IXE.

(4.3.19)

Combining (4.3.19) and (4.3.6) with (4.3.1), we obtain

Lt.l 2P [2 ? 2 _,
+Cl+ C/——»‘F(aﬁxm ~§Txm+£2_£.(£‘ﬁ+ﬁﬁi —a?JXB_'

(4.3.20)

The bracketed quantity in the first term of this expression is
analogous to a charge distribution and that in the second term is
analogous to a current. The additions to 'fk in the first term
and gI in the second are, of course, due to the internal structure
of the molecules.

The force, 2$ , may also be written in a different form. From

Maxwell's third and fourth equations {gee (2.3.17) and (2.4.24)] s

we write

_9 5\ 2 (4.3.21)
RO P=%F v 'E

and
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!C——)
l:z:,
-

b
9 %XB-Q{; 2__5__ (4.3.22)

It is also easily shown that

|<v

- abxhxgzgan(/m B> 925 (’ml_z_) (4..3.23>

where T' indicates the transpose tensor. Using these relations,

(4.3.20) may be written

+é%(;mg')_53_£< )"'ZaT @:r lrj XB - ai 3:

(4. 3. 24)
Now we use the second Maxwell equation, (2.2.7), to rewrite the

time derivatives in the above. This results in the expression,

2 (4.3.26)
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is an operator related to the displacement, _D_ ‘:see (203,16)] .

Using the identity

_2, — 2_‘-; 9‘—3— (4.3.27)
(axxﬁ)xﬁ‘-“g ==

- __JTIE. % (Q’L)(B> 4.3.28)
2|T-s T(mse gt x(xe)-£ (L4, )XB]
where

':\;::‘. QJT?[:,E £ (E'B':‘Q\'E_>“ ({,\o‘ B)tﬁ E,] (4.3.29)

— (4.3.30)
B=fg+urt

and

W= p-urm

— ] e, (4.3.31)




In the above @. is related to ghe displacement, Q , and @_ to
the magnetic intensity, ki , so that ]j may be thought of as a
generalized Maxwell stress tensor.

Finally, defining the quantities,

N= ;;‘rzglxg (4.3.32)

and

we write (4.3.33)

K_E—’EL‘!‘-_ _3:‘4%‘- ‘ | (4.3.34)

Thus the long range electromagnetic force in (4.1.14) is written as
the time derivative of an electromagnetic contribution to the
momentum density plus the divergence of an electromagnetic

contribution to the pressure tensor.

4.4 Two Eorms of the Equation of Motion

For a gas in which the molecules interact according to a short

15
range potential, the equation of motion may be written as

opr 2 )

81



where E is an external body force and where the collisional
pressure, ‘é; , is similar to, but not identical with the éd’ of
the present work. This point is amplified in sectior 4.5,

From (4.1.14) and (4.2.21) we write the equation cf motion of

our system in a form similar to (4.4.1),

(4.4.2)

939/‘-’+3 %

ErRETE i AR

where

The effects of the long range electromagnetic fields are contained
in 2$ {jsee (4.3,20i] in the form of a "pondermotive' force

addition to the equation of motion.
Substituting the expression for 25 given by (4.3.34) into

(4.4.2), we arrive at an alternate form of the equation of motion,

0
2 (pun)+ o= Bolbeb) rans 00

In this form, the long range electromagnetic effects are contained

82

in _'\_l , the electromagnetic '"momentum', and éL , the electromagnetic

“pressure'’.
Both (4.4.2) and (4.4.4) should be useful in dealing with

practical problems involving the equation of motion.
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4.5 Limiting Forms of the Electromagnetic Terms

As an indication of the interpretation of the electromagnetic
terms in the equation of motion, we consider the explicit expressions
for 5 R N R é(_ , and éb retaining only terms of first order

in EJL and p—h

In the limit just outlined, we write the 'pondermotive" force

[see (4. 3. 20)]

X:feE_(%.E}-.}.;Z.BE +‘CL_JXB “.5.1)

2 0 12,
+L itXB +(a,xM)xB~avxmxB+ c o 3 XB

where we retain only the dipole terms in the expressiong for __E s

M , and _gp [see (2.3.15), (2.4.22), and (2.5.7)]

m Z\<Ch‘ Rﬁucf(vh )> (4.5.2)

0 _
M= -':/:“‘4 = é}j(&k Ry X U, £(rg-2)> (4.5.3)
ki

(4.5.4)

g,,:;@ by, Ry & (1)
~
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The final forms for the expressions for M and gp are a result of
introducing the stream velocity,A{{gee (204.25)_1,j into the preceding
forms and ignoring the effects of the Brownian motion velocity,,4€h
[see (20&026;Y . These equations give a further insight into the
origin of tﬂ and QIP . In the limit of this section these quantities
are due to the motion of Jz with the molecular stream.

Returning to (4.5.1) and summing the second, third and fifth

terms, we find that

QU
s

— _a_:—_..p +.cf: “‘a“(ﬁXB) (4.5.5)

In deriving the above relations, we have used standard vector
identities and Maxwell's second equation, (2.2.7). Adding the

sixth term in (4.5.1) to the seventh term gives

0 0
(a—rxt‘}x@‘ r X MXB= (MXW)XB

08 2

L4

(

<
|

K<
W
i~

®

0
(4.5.6)

0B

or

—
—~—

’

1<
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where we have used standard vector identities and Maxwell's first
equation, (2.1.3). Substituting (4.5.5), and (4.5.6) into (4.5.1),

we obtain
(4.5.7)

The first two terms in (4.5.7) are the usual electrostatic and
magnetostatic volume forces and are the primary terms. The third
and fourth terms represent forces due to the effect éf the inhomogeneity
of the fields on the polarization and magnetization of the system.'
The final terms represent time dependent forces.

Applying the limit discussed in this section to the second
form of the equation of motion, (4.4.4), the expression for the

electromagnetic momentum [see (4. 3. 32)] becomes
I .
L\l T yre E_ XE) . ‘ (4.5.8)

In purely macroscopic derivations of the equation of motions, the
term, QXB, , (or EXH, if Q is assumed linearly related to E,
and H_ is assumed linearly related to B_ ) arises and is identified
as the electromagnetic momentum. For a system of isolated point
charges in a wacuum, _D_XB_ , of course, reduces to _E_XB, thus the
difference between our results and those derived by a purely

macroscopic treatment consists only of the manner in which the

internal structure of the particles is taken into account. We now
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examine this in more detail.
The macroscopic derivation of the equation of motion consists

of forming the divergence of the Maxwell stress tensor
T= L %L(H‘E‘Q‘E}-—@H‘QE (4.5.9)

This quantity is also the T of section 4.3 in the limit being

considered in this section [See (4.,3.29)] . Using Maxwell's

"equations, the divergence of I is written as

10 (QXB) (4;5;10)
mc ax- 9

Q

15
1
e

B
:fe,E +J£:_ng+—'— —p-~—F+—'B-—+H (4.5.11)

is interpreted as the total force on the particles in a small
element of volume about the point t . Following this interpretation,

F is written as

F: _Qﬂ.l R (4;5;12)
= ot

where 5’! is the momentum density of the material medium at v

Assuming the validity of (4.5.11) and (4.5.12), (4.5.10) becomes
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0 L _ 0 . (4.5.13)
2| §% T dme (QXB) =L,

which has the form of a conservation equation for f/g + -q—.:',-c- (QXB);
hence ;‘-’,-;c(gx B_) is .interpreted as the electromagnetic contribution
to the mpmentum density.

Our major criticism of the:preceding derivation is that the
assumption, that JE is the total force on the material medium at

[ , is a point not adequately demonstrated. This assumption
- seems t§ be made largely becuase ?t allows (4.5.10) to be written

in the desired form of a momentumlconservation equation, (4.5.13).

It is, of course, difficult to determine the correct expression

for the force on the medium at .t ; This is one of the reasons

that we abandon the macroscopic approach in our development and

’résort t6 the statistical treatment outlined in this chapter;

- Equation (4.4.4), contained jn this work, is';_§on§q;ygg;gnﬁequation of
the form of (4.5.13) 'if the term ééqus neglected. For most
applications neglecting éér*is valid as is ;ndicated in the
digcussion-followigg (4.2.21). Regarding (4.4.4) as a conservation
equation, then, makes it reasonable to interpret fﬂ [}ee (A.S.Bi]

as the electromagnetic contribution to the momentumf Since we

have more confidence in a statistical development than we do in a
macroscopic one, we feel that f_\l_ is the correct momentum

expression;

Again introducing the simplifying assumptions outlined at the



beginning of this section, we write the electromagnetic pressure

[ see (4,3..33)‘] in (4.4.4) as

i:T"J”: I(M'B—+f'§> "“CEA[;PXB, (4.5.14)
L = =

where I in the limiting form given by (4.5;9) is the usual
expression for the Maxwell stress tensor in a material medium.

The collisional pressure may be written, keeping iny the
A= 0) Mm=0 , and M=| terms in (4.2.20), as

b= 45 e (e

+% (”"-") (% 2)_957 lr(-r’l Y (k)‘r')a'.‘i'

As an aid to the interpretation of £¢ ; we rewrite the expressions

©) U :
for M (!J!‘)and N \(!)‘f/)c From (4.2.12), we have

N9 r)=) Cepe, Slon-v) Slome DD - (g (),

htl
where fe(ﬂ is the charge density at [ {see (2.3,13)3 . In
writing the last term of the above equation, we make use of the

relation,

88
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;R«ekeﬂ $ (=) £ (-4
= ;‘(@N(% »:) D §<Cl {(v,- L’)) —¥<e& f(rlrtbl

= £ (v) f_e(‘-“') . (4.5.17)

The second term in the second line of (4.5.17) is of the order of
‘ kt

‘magnitude of N, while the first term is of order N ,- where N

is the number of particles in the system. For a statistically

significant sample, where Pd is assumed large, we neglect this

second term in comparison with the first; this leads to the third

line of the equation. Using a relation fm:_E(t) and E(ro similar

to (4.5,17), we further write from (4.2.12)

_.N_.m(t, )= ;‘;«%@-&- ( @,j-‘ 3 ;ﬁ) $ (t,;r) J(r,z—r') >

44
6 () P(e) - 5, 6) P ().

Making use of the expressions, (4.5.16) and (4.5.18), we may

(4.5.18)

interpret the first term in (4.5.15) as arising from ''charge-charge"
forces and the second from ''charge-dipole' forces.

To obtain a clearer idea of the nature of é¢ , the first term
in (4.5.15) is examined in more detail. First, the molecules of the
system under consideration are divided into variows types. The non-
equilibrium radial distribution function for particles of type «

and type /2 is then defined as
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= l . o (4.5.19)
88)2 G & ),
where
R:\ﬁ’~r_, (4.5.20)

The quantity,

My (t)*—%j(f(rk; ‘-’)Z (4.5.21)

is the number density evaluated at point V' of particles of kind X,
An expression similar to (4.5.21) may be written for /hﬂ (!ﬁ+—@),
The symbol Jk‘ in (4.5.19) indicates that the summation over J&

is to be taken only over molecules of type X ; the symbol J% has a
similar meaning. Introducing the radial distribution function into
the first term of (4.5.16) and the number densities into the second

term, makes it possible to write

(_E,L“') :vz\fx /’\x(ﬂ eﬁ/"/s(”@) {3,,(/5 (‘C,@> - l] (4.5.22)

Neglecting the second term of (4.5.15) and introducing (4.5.22) into

the first term allows the collisional pressure to be written as

RR

4%:—‘,[2 Cou e (2) €sMy (!'Hd 7{3—(345 ([J@) RIGLY (4.5.23)
op




In the limits of low density and high temperatures, the radial

distribution function may be written as

G (£,2)= Gua (0

‘Cpo(/s(m/)ﬂ'
= C

= |- C?M(YA F oo (4.5.24)
— —Iﬁ_\- |

~ R/
(?a((s(R) = CaC E (4.5.25)

is the coulombic potential between a molecule of type X and one
-R Il
3 e / , where w

is the Debye radius, is included in the expression for the potential

where

of type ﬁ a distance R apart. The factor

to represent the shielding effect due to other molecules. If
(4.5.24) and (4.5.25) are substituted into (4.5.23), é¢ may be

written as

I egey RR  _w/p
ir‘a‘z_;—jf;#‘—/hx(ﬂmuﬂ& v e T dR

1,12

(4.5.26)

91
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In the lagt line cof the above equation, we have assumed

(4.5.27)

o (e48)= g (e},
" i -R/ke

This is valid for small F{ , and, for large ‘2 , the term,'Ci
approaches zero rapidly enough to render negligible the error
introduced by assuming (4u5;27)°

In the usuval treatment of gases with & shart range intermolecular
potential, the collisional pressure is given by (see the discussion

15
at the beginning of section 4.4.)

LN dé, (%) pn N
i@v izﬁ:ma((t\ /‘%(Yf) -——-jl-k—"":_r{_;ﬁdﬁ(!)rg}a{@ )(4 5.28)

where the introduction of the 0( and /3 subscripts corresponds

to the grouping of molecules into various charge types. If the

unshielded coulomb potential,

(PM(M: ef’(RC/& ’ 4.5.29)

/
is substituted into (4.5.28), 4@0 becomes

l == .5.30)
é@ - J’)-,;Coﬂ/ho( (r)eﬁmﬂ (!‘) . R3 ja(ﬁ (EJB)JB_ . (4.5.30

Finally substituting the expression for ﬁﬂﬂ(t)gxgiven by (4.5.24)

and (4.5.25) into (4.5.30) gives




93

~— [}

/ KR €€ [ R R ~Re
ifp:‘l.zex/"u (¥) " (¢) R AL AT = ol
<3 ' .

(4.5.31)
The integral in the second term of (4.5.31) is the same as the

integral in the final expression, (4.5.26) for é¢ This integral
converges while the iﬁtegral in the first term of (4.5.31) diverges.
Hence, the expression developed in this work for the collisional
pressure of a coulombic‘system is convergent while the usual expression
is not. This convergence is due to the introduction of —-I into

the integrand of é(? [compare (4.5.30) with (4.5;23)7 as a
result of the separation of the electromagnetic term in (4.1.6)

into a long and a short range part; In essence, the divergent

portion of 4%; has been removed and written in terms of the

macroscopic electric and magnetic fields as él_ or A

4.6 Comparisons with Previous Results

In this sectiom, we compare our form of the equation of mopion
with those obtained in earlier developments. First, we compare our
results with those of Mazuro17 Mazur carried out a statistical
stud& of a system of molecules with internal structure, neglecting
magnefic and retardation effects. He also neglected electric
multipoles of higher order than the dipole (or quadrapole when the
dipole is zero); In addition, intramolecular effects are neglected
and Mazur restricted his study to molecules which are electrically

neutral.
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With these restrictions, our equation (4.4.2) may be written

af/-‘f 0 0 (4.6.1)
t QL= + X o
o . =

The éM of (4.4.2) disappears because of the neglect of magnetic

effects and retardation. The electric force is obtained in this

limit from (4.5.1), as

X=P- Z% , (4.6.2)

where E is given by (4.5.2). The charge density ,fe is absent
in (4.6.2) due to the neutrality of the molecules. The collisional
pressure, é(? , in Mazur's case is obtained from (4°2;20) by
keeping only the A =0 terms. The /h=( and m=1 terms disappear
since the molecules are neutral. Hence only the M=2Z terms
containing _R_}h Bﬁ , but not those containing B,L Kh‘, are

retained. Under these conditions /,{g‘ is given by

— .1 Sy ”V<<R f%')(‘”"”)
Ad 9
/ 9 | /

- — — T—— 7 dt .6.
On comparing with Mazur's expressions, we see that the above
expressmn for é@ is identical to his O\U , our é in
(4.6.1) is his ¢ , and our _)_(_ in (4.6.2) is his F 'M ; hence

our (4.6.1) is identical with his (III.14).



Newr we compare ow o :o3ults with those of Kaufinan , whose work
is alsoc a statistical study. Kaufmwan glso ignored magnetic effects.
In additicn he restricted his study to particles without structure.

Under these restrictions, equation (4.4.4) beccmes

Appiving Kaufman's restrictions to (%.3.33), we obtain for the

electromagnetic pressure

P

—— ) — —— ) e ..,,.._!__- SN 4.6.5
b=T= e lE - wEE. 6

Acain under Ksufman's restrictions, the collisional pressure is
: ; P

given by [see (-’4.\,2”20)]

hnd (a+2) o
- L ‘ 2 \(a) (r~~:’) © (4.6.6)
£¢‘ ’LZ‘O(A,‘," (az .(A ;ﬁ! Z‘

where B(o\ is given by {4,2.13). By comparing the above equations
with ¥a2ufman's results, we see that, with the exception of one term,
contained in his expression snd not in curs, our éw}—éty,g,gls his —I:_E
and our equation (4.6.4) is his (43). The missing term can be

shown to be related to the "self~iield" terms we discarded in
developing (4.1.12) from (4.1.11) and in developing (4.2.11) from

(4.2.10). 1In dropping these terms, we pointed out that for a



large system, they are negligible. In keeping these same terms,
Kaufman pointed out that they are important only for a system of
molecular size; hence there is no conflict between the two results.
Finally, we compare our work to that of Chu,4 In contrast to
the statistical methods used by Mazur, Kaufman and in this work,

Chu uses a macroscopic, "thermodynamic'" approach. Chu obtains as
plc, PP

his equation of motion

ECI R B Ry o

0E oL 0B oM

M- =B

h
"
o
m
+
(ol o
(L&
>
o]
+
P
l?l|
I~

}

¥
Iy
(M
+

N\

s

oM (4.6.8)

In the above expression e s /u , and «f are, respectively, the’
dielectric constant, the magnetic permeability, and the density of

the system. From our equation of motion,

08N

we see that we must compare Chu's f_ with our

96
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X~ g+ 0= g E+ETXB+ 22 P +92 p

<>

+ L2 (oxp) + & B (HPXB) -5 4y + 00,

l
c o
(4.6.9)
where )_( has been evaluated in the limiting case discussed in
section 4;5 see (4.5;7)]. The result Chu obtains for f agrees
with the above equation for L( in the expression for the volume
force, j?e +‘L1XB s but does not have the same form for the
inhomogeneous field terms {compare the third term in (4.6.8) with
the third and fourth terms in (4‘.6.9)] and does not include the
time dependent terms,

< (PXB) t ("-'E;(B)’
or

at all. The collision terms, — x—

)

expression for X are replaced in f by the "magnetostriction"

) 1 0€ 2 oM
b”[le T} +ifH 29 |

thus the short range forces between molecules that are expressed in

. ié + él‘\ 3 that appear in the

term,

this work in terms of the correlation quantities é" and AM are

treated in Chu's work in terms of derivatives of € and /‘4 . If
A\ L 3 . o

the magnetostriction terms are neglected in (4.6.8), ‘F reduces to

the expression for E see (4.5.11)] discussed in section 4.5 in

connection with a more common macroscopic development of an equation



of motion. The comments in section 4.5 regarding the desirability
of a statistical approach over a purely macroscopic development,
hence, apply to Chu's work also.

The essential point in the present derivation of the equation
of motion is the separation of the effect of the electromagnetic

force into long-range and short-range terms. We write the coulomb

portion of the short-range term as a collisional contribution, id’ s

to the pressure tensor, while the portion describing retardation
and magnetic effects is left as a force term, égrﬂ . The long-
range force is written in two ways. Writing it as a "pondermotive"
force, 2£ , gives rise tc cne torm, (4.4.2), of the equation of
motion, and writing it as ar electromagneric contribution, 4@L 5
to the pressure tensor plus an electromagnetic contribution, Di 5
to the momentum density gives rise to a second form, (4.4.4).
Heretofore, there has bean some confusion concerning the nature

of the electromagnetic pressure and momentum, and we hope that the
statistical definitions of these quantities developed in this
discussion clarify the situation. On comparing the present
work with that of other authors, we find good agreement with the
statistical derivations and sigunificant disagreement with the

macroscopic derivations. This, perhaps. is to be expected.

98



V. THE ENERGY EQUATION OF CHANGE

The final quantity for which we develop an equation of change
| 1
is the macroscopic energy density of the system, ‘gl:g/v +fuk +{ Uq .
1
In this expression, {i f A~ is the kinetic energy of the system

regarded as a continuum moving with the "stream' velocity, A~ , and
g Y, A

£ U= %;Mh<@1((k}¢'g)> - (5.0.1)

is the energy density of the random motion of the molecules relative
to the stream velocity. From the definition of the stream velocity,

.‘./\_[’and the random velocity, /1_/)2 (see (2.4.25) and (2.4026)] R

we write

f\)“-l-"iflv}: J£¥M&<L4£J(Urz)>. (5.0.2)

From the above, we see that the first two terms in the energy
expression are the ensemble average of the microscopic kinetic
energy of the particles. The final term in the expression for

the energy,

Ve=1> Kepe, T,‘_ = (),
i ;%< Lf’ i -{7’ 4 rﬂ (5.0.3)

is shown later (in section 5.2) to be a correlation energy density

in the same sense that éé (see section 4.2) is a correlation
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pressure. The introduction of j)u¢ into the expression for the
energy density is suggested by a similar term in the Irving Kirkwood
. 2 . , .

develcpment of the equation of change. The inclusion of this term
is further justified by (as is shown later, in section 5.2) the
cancellaticn of terms arising from the time derivative of \f U¢
o e ) _— L, o U .
with terms arising from the time derivative of Q_X/f &’ K . This

considerably simplifies the equation of change of the energy.

5.1 The Time Derivative of the Energy Density

We develeop an expression for the time derivative of the energy

density using methcds similar to those used in the preceding
A ‘ |
-r
9% -{1' 1o - f]’

in a Taylor series about rh_ (gee (4u2°95] , we write the

chapter {see (4.1.1) and (A,I,Qi] . Expanding

correlation energy deusity, (5.0.3), in the form:

- _LM C (ﬁ\-n\ (,,) 2\
fU(,- 1;; (m- /t; ;<<eﬁu 5 = ﬁ )BV Iry ~¥yl

im~4 (n) 0 (/*\
B [ gy

In writing (5.1,1), we have ignored the term,

(5.1.2)

-Z« Sire bl - oj LR

A‘#d
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because this term, which invelves a sum cver

L

M compared to the term included in (5.1.1), which involves a .

k only, is of order

sum over both k and 1. Since M 1is the number of molecules

in the system, M is @uff1c1ently large that the errcr introduced
by ignoring (5.1.2) is negligible.

Using the general equation of change, (1.5.16), we obtain for

the time derivative of the correlation energy density,

m-r)
9{04, ‘LZZ/ZI( :(—ﬁ)' Z<<eke [ (mn) (a)(M »u>

mz=0 R=0

.(AH} 2@)@”) l . (/h-/z\ (4) ( ? )Aﬂ) o
0Ly)  Vh-Yyl “9» ;p;% ( '“ﬁ) |-/ Il )

& M (/h -}

2 ) Al
“ Lo 2l (m-2)! Z«%%“ﬂz 4 R-ﬁ
m=0 A=0

() 2 (,.\——__-) | () r(/z) (a)‘”& L /oy
EArer 4" (B

Co m (m ﬂ)
A, (a
+—’EZ;/&' (MTZ«%C ( R()>
el
~ ? ) l ‘4 ~ /a " (/9 04 ‘
B (R}“A*ﬁ” o) ft >,
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The general equaticn of change is also used to obtain the time

derivative of the kinetic energy density

i L “rm m Us U J‘( bp - r)

(5.1.4)
2; / (ex: |El. .)+~é‘;gw _@”‘(mﬂom £ln-e)>.

s of A and /C& , we write the first term on

e }L\ - \; ‘‘‘‘‘ u {,M;l u}; i:% J‘(l.%“k”)>“::

€y
g

— ;_Vm, "}-F’Uw‘ﬁ +§/VQ/‘.{ +£k‘/y—\+%“] (5.1.5)

Here we make vze of the definition of 4é“ , (4.1.5), and

define

= Qfﬂww w18 (2h-) >, e

As we did in (4 1. 7), we write the second term of (5.1.4) as the

sum Of two [eree
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};QAEE‘. (o0 + £ YnX B’(%)] upblens)>

:¥<€;&{E () +o YX B(%)]’ 44 (EA‘Z) ) 317

+ Z;<e " {Eﬁ:(g 1)-Ep ()4 %x( B () - B ﬂk))]é’“ (5-t),

In the above equation UﬂMXB appears in the terms on the right

instead of Uk‘x B since

(gﬂlx{g.gh;o, - (5.1.8)

Also E(r—},‘) instead of EBA(ZA\ appears in the first term on the
right due to the neglect of the "self'" electric field [see the
discussion associated with (401;11) and (4;1;12)] .

Finally combining (5;1;3), (5;1;4), (5;1,5), and (5;1.7), we

write for the time derivative of the emergy density

ag(UK'FT'lN‘l'F U¢) 3 ) _
at :—'2‘?' qu/‘: +g”@+ék'@+%kj+X+A,
where | (5.1.9)

X§¥<Ch; [E (ELB +‘é’: Ijgux 8 (4'%’)} Up {’(L:h..t_»)> (5.1.10)

and
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A?—AK)"‘A . (5.1.11)
The first term in (501;11)j

AfK\:.:‘ <€ﬂuggﬁ: (ZI/A'E&. (v 3

e Ux (B end - B (es) [-un o)),

arises from the time derivative of the kinetic energy density

(5.1.12)

[jsee (5.1.4) and (5¢1u7{] , while the second term,

A@E 2_\%_‘31 , (5.1.13)
L

is the time derivative of the correlation energy density [}ee (5,1,3§}.
Equation (5.1.9) has the form of a conservation equation, i;e.

the time derivative of a scalar (the energy density) is equal to

the divergence of a vector (the energy flux) plus a scalar (the

energy source term). Hence, X and [S may be interpreted as

the rate at which the electromagnetic fields do work on a small

region of fluid about a point, r. These quantities may, thus, be

called the power density terms., Referring to the discussion in

section 4.1, we interpret X as the long range power density due

to the macroscopic fields. This is analogous to the interpretation

of the long range force, X, in (4.1;14)0 Similarly, analogous

to the treatment of the short range force, ég , in (4.1.14), ZS

is interpreted as the short range power density due to the effects
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of correlation.

5.2 The Short Range Term

We consider the short range power, Z& , in greater detail.
© («\
In comparing the forms of the two parts of A A nd A
(isee (5.1.12) and (5.1. 13i} with the Z& of section 4.1 (~see
(4.1. 9)] , we see that the form of Zk is very similar to that
of ZX . Therefore, we first treat ZS in a manner paralleling
our treatment of é} in section 4.2. In the latter part of this
(c
section, we return to ZX and show that it cancels some of the
. ., ., AW

terms in the resulting expression for .

Using the double average notation introduced in (4.2.1), we

(K
separate Zx into two terms

A(K\ A +A (5,2;1)

The first term,

(\ Ity (5.2.2)
— ‘._i_ ’ k s

is the c0ulomb1c interaction term analogous to [3 see (4 2. Ai]

in section 4.2. The second term,

A(;\ =- 1‘2’;<<€;&- E ) ~E" (14
-L X (gm\@'(r@]-% <f(rA-r5>>,

(5.2.3)
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where ET(Z}'A is defined by (4.2.6), is the retardation correction
to the coulombic interaction plus the short range magnetic interaction
term. This term is analogous teo égpa [gee (4e2°5i} and, as is
pointed out in gection 4.2, is probably small.

vy, ~b..
wpanding ~hi "_’g in a Taylor series (’see (46209)]

write 'rh‘ - V‘% |3
K ) (i (m+)
zz m;«%{w T

lmS 5.2.
ey

On the right side of (5.2.4), we have not 1nc1uded the term,

e v .-»_n'.
<<€9,A6ﬂ.0 ———&"— M_? .gh&“(t;,l~k)>>, (5.2.5)
| Vs - %l |vh -l:),a.]
A#f
since it is negligible compared to the term we have included. This

point is discussed further following (4.2.10).

We now introduce a function

AT
m -1 (m-nY (lk—a\ () { . )g(a ) Jf(u J
z Al (m-n)! Z<<C‘u‘€% =h K% (e, y-4)d (Y'Y
~=0 T,

2

(5.2.6)

R 1(1: ‘3:};"‘({ (£ € (k- ) §(up-u') § (uf v ')} »,
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) v Vi

(m ‘
similar to the hl ( )= ){?ee (4.2,12i] cf section 4.2 except that

(™
C; involves the velocity as well as the position. The zeroth

.
—

order term of (5.2.6), is

G leue)= €k€z<<f (g t) € (e § (=) § =)

_ ((‘(gh-z’} {(z,}k") J(HL-‘J'J e "-/'j>>.

(5.2.7)

This function is closely related to the difference between the pair
distribution function and the product of single particle distribution
()
functions. The higher order terms in the expression for g? describe
the effects of molecular structure. In the absence of pair correlation
(/“\ v G(I‘\-\
with respect to either position or velocity, £§ vanishes, hence X
is a correlation function.
(m
In terms of C} , (5.2.4) may be written

10=(Y. @ )u'otd () it

(5.2.8)
ZG uiu)u (e "““)( w'}“::,—q de'detdu'oly”,

The last line in (5.2.8) is obtained by interchanging variables in
a manner similar to that used in developing (4.2.16) and by using

the relation

m

{ " (\ wo e,
C:";_. v)\')l:‘)‘:'") (e TME(%)MQA(tﬂjgjg)'("‘)l‘:‘s (5.2.9)
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TW .
where L i€ dn acbhitrary temsor of order M Tre derivaticn oI

‘5 92,95 foliows lines =iwilir to those vsed in deriving the corre

N(l’\) [ :
ponding releticr «oveiving 1Y (v,v 3 see (4,2.14)

Combining the

first =rd seccad lines of (5-.2.8), we write
IK\ d i a\ \ b
K _ 1 10} PR 4,) u’ (v’-r)-u” h".h)
8= L8 e lemg-uaees
m=0
(m+e) % L ined) ' 0(”‘1 y"/u ol"’” (5.2.10)
\324} é};?gﬂ 4 444 . 5.2.10
Expandirg <§(!ﬂ‘5):w a Taylor sevries [\see (A32n183] . integrating
over ¥ . and dropping ore of the primes ¢n go , (5.2.1C) becomes
) ) ‘H)
(‘d ! D PR B ﬁ) (/..f.)(a (1 ' u’
o L , A " - . - u
P LS G (e e (uu i e L du”
M=o — =
i5.2.11)
6o - haid (A+l)
9 J ' a (4‘ ) (/\3 ’ P /" ) a / /
-Z . — - [ | att (v vy , (! “0(440/“
L z(m! o) (HJ G (br,4v)u ) Je- Wé”
A=0 - =0
(K)
1f the stive expression for A is added tc the expressicm for
Gl o «, | L s g
Z& . derived ir the previous section see {5.1.13) and (3.1.3){( ;
i number ot terms cancel.

To zarry out this addition, it is

convenient to 1ntroduce the correlation

o™ _‘
function 2 into the
N
expresaicn feor .

We first define s new correlation funCLiOﬂ,
~ (m (/“\

C) \(r/ ‘V"’/U'H//):L)\‘Ag“/’ a _%

- )

XA dt . 3 'R""/a
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c"
which is a partial time derivative cf taken over the intraparticle

< (m)
coordinates B&au The zeroth order term of Qé is, of course,
’é"’_-_ 0 (5.2.13)

/‘é(m\

The higher order terms of , which involve time derivatives of
R}u , are related to the magnetic effects of motion within a
molecule.

-G lr? !
' 4
Substituting Q (!)!‘ U lf")and G ‘C,‘f,lﬂ)'ﬁ) into (5.1.13) and

(5.1.3), we obtain

(5.2.14)

' lﬁ’ Ml) '(mﬂ) (5%}_) (MH) , 0('5/0/’(’ /ﬂlgo'v

Adding the above equation to (5.2.17), and making use of (5.2.1) and

(5.1.11) results in
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Mm=o
[“w \ (o) r . :
_0 I — ("a" ‘ (‘1") “ 2 () ( ) A7) h oy N
r % | Ly (el o2] - ()" (%) et G (e Jd“"‘“”“
A0
00 (,ﬂﬂ)
(m+1) . - 0 [ / #
“"in z é (-J—,‘:’,’W)'( Hj(?w) " dedu'du’, (5 5.15)
= &) Je-v|
(™ Vo,
By substituting G (Z‘}!‘)‘_’_‘JH j into the expression for éé R
(4.2.20), and g U¢ 5.1.1), we obtain
= | ;2_.. ta) N N\ (at) (_Q_)M‘ﬂ)l ) ,,J '
i‘b: J’)—.g (a+i)! (D._L”_) ! )(K"‘L‘) oL’} |k-v G (r"J =)= ole'dudy’
w30
g 4=0 (5.2.16)

oo N)
03 () e € gt
m=0 -

Using (5.2.16) and (5.2.17), (5.2.15) is written as

A:~%,<&¢.ﬁ+guqa+$‘>+ds (5.2.18)

where
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A =1 z ’é(,uﬂ (— M'M”) (1) ( 0 >(/"'ﬂ) | O{V"A“’ﬂ(u + A(u)

3717 oL’ Jv - [
(5.2.19)

is that part of A which apparently cannot be written as a divergence.

The term %‘Q is defined by

—_ /°‘ 0 o , m) A~ 4
%¢:i/‘.’z (a_f") =k c, ’('f,“,” ) "

= | 0 ) N (at) i)("‘ﬂ) APNG AN DN P PR
5T ) et e B o it

Mm=0

a=e (5.2.20)
where

/\_r'gg'-,g, (5.2.21)
A= u”-/v‘ (5.2.22)

- - =)
and

G(A‘) / ’ //J —

2 (i’, A =

('“ -4 (m-n

Z m}:«eke (m WD 0 (-t) e ) G
R=0 .

(5.2.23)
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4 Vv
In the above definiticns, the A and A are analogous to the Af

and may be thought of as random velccities relative to the stream
c;“} G;A)
velocity A& . The M, 1s analogous te , but is a correlation
function cver the randeom velocity instead of the total velocity.
From (5.2.16), (5.2.17}, and (5.2.20), we see that éé’ f U¢ s
and EL& are correlaticn quantities since they all involve some
verzion of the correlation function. Since the first term in the

/ C;UM
expression for Zk . (5.2.19) involves a version of

(W

J lt’
M see (502.3i]

also, is a correlation term. Finally by comparing
with 4Lw|see (4 ?,Eﬁ both are zeen to have similar forms; hence
by an argument snulogeus to that used to show that fgpq is a
correlation term (Fit the discussion following (4°2,24iz , it can
be shown that Al:,! is z21s0 cerrelaticn dependent. Thus Al and A
are correlation quantiiies. As was peinted out in the discussion at
the end of secticn 4.2, correlation implies a short range collisional

interaction. It is in this sense that we regard the term, Zl , as a

short range term.
5.3 The uoug Range Term

We now return to the term >( which represents the long range
macroscopic effects cf the electromagnetic fields. The discussion
in this section ¢losely parallels the discussion of >< in

section 4.3.
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Expanding (5.1.10) in a Taylor series, we write

3 @w iy (e
M=o -
Z@k ULXUL fl( V v>> (mt1) 9>(”‘)_‘ 5.5.1)

Applying (4.3.5), the order of differentiation in (5.3.1) is inter-

changed to give

o M m-n) ) -
X:ZZA(; l,,\-,ql (3,,3( (m~ a[( _L:y “;43&‘ R]L)“L‘f (r)~r ] .E

+§;0§:,f[ﬂ'\_: (ﬁ"‘d“ [‘a% Zj(% Ry, (X U J>] B

DRI YR ATENE

e “0 Zm‘fﬁ: . (%M‘.:\"“[ a%" ’g@ €U X et B
SZEZ /(5.‘3:-/2 ) (%TT‘Z\”“ ) "“;@m G0 (o) [ E
&5

(5.3.2)

Using standard vector identities, the above is rewritten as
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Lo, oh Ga [y mrta) L ga)
. ~1 ( u" 4 A} ‘(_-:ly o j’__u \ m ﬂ» (’ ! (Mf
X=d-k L, 2 A i) o <’4Z<€}h(ﬁ Lu;, £ler) > XE

oo M n (Ma—/z
(._.,g Y ms P M‘i’
"'JEE@W(»A [ \/\ Z“”‘u" SR

tatior Lo the Tl toca SF i5.%.3), three new

Lttt Vo

<m0 \
) “ — ¢
Mzt () 5e) Mo G.2.8)

J .
Pt art pacloof EEE whizu i deporndent nper UBA . The second,

goantity

o l/‘" ’?-\ "'-\

l !
Py /H,/?, /M«l /S
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is an operator in the sense of the magnetic moment operator, ')ﬂ
[see (4°3c15)] ; and is, in fact, that part of m which is
dependent on HL The final quantity,

(D b Sy A

—uT by Lo pl (hen) | 0

e\l 2\ m
o[ e s s
L : 3

is related to 'YY\ in a manner similar to that in which

~c—

(5.3.6)

[see (‘265‘,9)] is related to P . To further simplify (5.3.3),
the previously defined current density, J , magnetic moment density,
M, and polarization current operator, ;F, 5 [see (2.4.21), (2.4.22),
‘and (4.3&7):( are introduced. The sixth and seventh terms of the }
last form of (5.3.3) result from the application of the conservation
equation for g (2.5.9), to the fourth term of the initial form of
(5.3;3).

It is also possible to write X in another form. Coupling the

Maxwell equations, (2.2.7) and (2.4.24), we obtain

2D 0B 2 0
= B 4+—B=-4TJE +c(3nXB)'E — |77 XE]-B
ot — ot T - o or

(5.3.7)
Using the definition of D , (2.3.16), and H , (2.4.23), and

rearranging terms, we write (5.3.7) as

| 2P 2 D ([ )
Q'_EﬁT‘E*C(‘a‘r‘Xﬁ)'E"eﬂ'ﬁ(E“3 - & & (e,

(5.3.8)
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fpm 2y S o e % —I. lﬁ" ¢ th) [ / :
—— i -, » - ,X\, ’ oD
X= "5 gw \= Rt N g {ﬁu = iir, E—_,i tX, ‘5 3.9)

. ¥ 5.3.10
Mo BT, 5:3.10)
“u ;

/s / ;; i oo - I “" ‘l v p
P L T Y L T (5.3.11)
)( = &’Z;?f" coen L R S
"/ .
T e : 1 ! be wrv1Tifen 4s & Lime
!

derilvative o o oupunen

Fios1ly ¢etin. oy

(5.3.12)

il
Ry
=)

Pl Y
T
g:

\ ‘
- _c [ ey LR (5.3.13)
%L - : }\é L ‘&A/} N

we w1l

" 3‘;”5 A (5;3.14)
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In (5.3.14), then, the long range electromagnetic contribution to the
equation of energy change has besn expressed as the sum of three terms.
The first term is the time derivative of a quantity, (4_ , which may
be interpreted as the electromagnetic contribution to the energy
density. The second term is the divergence of a quantity, %LL , which
may be interpreted as the electromagnetic contribution to the energy

/
flux. The final term, )( , 13 not so easily interpreted. From

/

(5.3.11), it is clear that every term of .X contains the time
derivative of E;&i , l.e.. LJ , , the velocity of a particle within
a molecule with respect te the center of mass of the molgcule. These
intramolecular motions give rise to the magnetic properties of the

/
individual molecules; hence >< is related to the magnetic effects.

5.4 Two Forms of the Energy Equaticn of Change
For a gas in which the mclecules interact according to a short

range potential, the energy equation of change is

3.0 (Ut Uy “Mf") , ,
f( : D+ = ‘525' f(uk+u¢+‘k“’1>/‘—’+(ék‘"é(;)/‘_"l‘%,ﬁ%;

(5.4.1)
U/ / /
where q s ¢ ° and ﬁ;¢ are similar to, but not identical with
our correlation energy density; \)¢ , correlation pressure, 4£¢ s
and correlation energy flux, q}¢ . This point is amplified in
the next section.

' From (5.1.9) and (5.2.18), our emnergy equation of change may be



- _2"‘ ' _f(l)*l"&ﬁﬂﬁij-é.,(_{-}%]{,x +A/, (5.4.2)
where

D=V +U¢, (5.4.3)

and

%: %k+%¢' (5.4.4)
In the form of the equation of change given in (5.4.2), the effects
of the long range electromagnetic fields are contained in the long
range electromagnetic power term, X | see (5.3.3{] .

Substituting the expression for )( given by (5.3.14) into
(5.4.2), we arrive at an alternate form of the equation of energy

change:
_QL f(()r& N‘X-}U‘, = (5.4.5)

9 1 t) / /
—v f<\)+1/u‘ /L’*Jé'/‘i +4+%L]+X +A.
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In this form the long range electromagnetic effects are contained
in the long range electromagnetic energy density, U(_ , and the
long range electromagnetic energy flux, %—L 5, plus an "extraneous"
power, X,

Both (5.4.2) and (5.4.5) should be useful in dealing with

practical problems involving the energy equation of change.

5.5 Llimiting Forms of the Electromagnetic Terms

As an indication of the interpretation of the electromagnetic
terms in the energy equation of change, we consider the detailed
expressions for X R U R %L’ U¢, and %é’ keeping only terms of
first order in R_L.and L]j,‘

In the limit just outlined, we write the long range electro-

magnetic power [see (503.3)1 as

X=§'E+c(a‘afx-'“l>'ﬁ ‘Cg%‘(!:"x-)

2P e
+—3*'-§-p'5+ ot E-BE-

R

<

‘B | (5.5.1)

- where we retain only the dipole terms in the expressions for

E’,M, J-_-p , and ?J In other words (4.5.2), (4.5.3), and (4.5.4)
~
hold for E,t_’., and JP , and _p_ {see (205,8)] is expressed as

-
—

d

ol

= <€w%$(rh—3)>' (5.5.2)
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In this limit, the operator, , in (5.3.3) is written in (5.5.1)

as the function;

<

= t;@u U Up £ lon-v)>

)(zéf, (5.5.3)

e
—

-

1
C
In the last line of (5.5.3) the stream velocity, v [jsee (2.4.25i}
is introduced, neglecting the effects of the Brownian motion velocity,
ka. {:see (2,4.265} . Comparing (5.5.3) with the limiting forms
for ]?‘ and Eﬂ given by (5.5.2) and (4.5.3) makes it reasonable in
3

the limit of this section to interpret Iﬂ_ as a source term of the
magnetization, l}l , in the sense that l_ is interpreted as a source
term of the polarization, E

Applying Maxwell's second equation, (2.2.7), to the second and

third terms of (5.5.1) and applying the polarization conservation

equation, (2.5.9), to the fourth, fifth, and sixth terms, we obtain

o

E 0
X=JEtJd :-B—:— 3

|2
|
{

2R

B (5.5.4)

>

The first term of (5.5.6) is the usual Joule heat term. The second
term represents the rate that work is done by the interaction of the

polarization current and the electric field, while the third

120
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and fourth terms represent the rate that work is done by the interaction
of the magnetization and the magnetic field.

Considering the electromagnetic erergy density next, we see that
the simplifying assumptions introduced at the beginning of this

section produce no changes; hence

U, = Iajﬁ (E1+&1), (5.3.12)

This equation differs from the usual macroscopically derived

: . 19 . .
expression for the eleztromagnetic energy density = which is

1 (=, . (5.5.5)
(i (I; b+8 H_)

Both (5.3.12) and (5.5.5) reduce to the same form for a system of
isolated point charges in a vacuum. However, when the point charges
are grouped into molecules and the effects of multipole moments
are introduced, a difference exists which we now examine in greater
detail.
/

The usual form, k%_ , may be shown macroscopically to be equal

to the work done in assembling the true charges and currents of the
20 | . , ,

system, i.e. in assembling the charges and currents that contribute
to iﬂz and J . However, choosing this definition is arbitrary.
It is possible, for instance, to choose instead the work done in
assembling the total charges and currents, i.e. those that contribute

to
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5.5.6)
P (

pust

and

0 P |
};<C;u%,,<f >> JtezrxM +%§t:" (5.5.7)

fo farn: o, i oww e thiz "rotal work" ss a bagis of the definition of
the erergv densicy . we obtain, using the macroscopic derivation cited
ALGVE , U ERPY R AT ‘-“—(E ‘I'B )

We do not, noswsoec, Lase our deiinivicn of the energy density on
the above voservotio . Gur definition is chosen because, when the
ererzv equatics of chzpge ¢ written in the form of (5.4.5), with as
many teros as ossible written as a time derivative plus a divérgence,
the term UL i+ mouced with the energy terms. It is, consequently,
quite natursl «id Jcuvenient to call UL an energy density.

Turning now to the energy flux, and introducing the simplifying

approximsticns discussed previously, we write from (5.3.13)

(5.5.8)

4= QC:EF (E?XH_} - gf,

I[he first lerm iv this equation is the usual expression for the
Poynting vectcor.  The secoud term represents the energy flow due to
the polarization curvent.

We ncw ccusider the collisional terms UQ and %_¢, Treating
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L% first, we retain only the first two terms in its series expansion

(5.2.17), to write

1<

/
27

Lo‘ \r-v Q(O)(EJ)‘MJ o’f,‘i"%

The last line in the above equation is the result of carrying out the

! “
and Eﬁ in the first line. The explicit forms

integrations over Q
©) )
of Qi and Qg are given by (4.5.16) apnd (4.5.18). From these forms,
28 was pointed cut in the discussion of Jg¢ in section 4.5, we can
interpret the first term in (5.5.9) as resulting from charge-charge
interactions and the second term as being due to charge-dipole
interactions.
Following the discussion of 4%¢ 5till further, we consider the
first term of (5.5.9) in greater detail. Introducing the radial

distribution function SM(!)\Q [see (405919)] into the first

term of (5.5.9) and discarding the second term, we obtain

f\}f. {z € Mu(2)enMs (”@He‘ %(5,@)- 1}04@, (5.5.10)
*A

where 8: is given by (4.5.20) and ﬂ\x by (4.5.21). Introducing
the low density limiting form for 3¢p(tjg> given by (4.5.24),

(5.5.10) becomes

) deldu”



ey,

fUQ:J’ZZ%%/“x('C)/"p(E) ?I{-‘ﬁ 0{@_ (5.5.11)
4B

In the Irving and Kirkwood treatment of gases with a short

range internclecnlar petentizl, the collisional energy density in

94
(5.4.1) is given by“L

V=5 Y md )| Gl e, 05
Pl

For a4 coulombic poternital te which the short range treatment does
net Apply, thi. - oo
~R/)p
-t . . (I )
p ?l::—LjZ‘ ) '1—64k'- 81 L €
f\/¢ ~ Jek,( /““(K)Eﬂ/"ﬁ(f R = ‘Fr‘— K1 0’@
«p

(5.5.13)
Comparing (5.5.:1) and (5.5.13) v is seen to involve only a
£ ¢

»

convergent integral while :f\J¢ contains a divergent integrgl as
well. The convergence of _&l)¢ is due to the presence of -1 in the
integral in (5.5.10). The -1 is present because -g‘)d contains only
the short range effects of the intermolecular potential. The long
/

range effects of this potential which cause :f U¢ to be divergent
are included in the long range power term, X , where they are
expressed in terms of the macroscopic electromagnetic fields.

We now analiyze QTQ in a similar fashion. Retaining only the

first two terms (s =0, n = 0,1) in the series expansion of %é s
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{5.2.20), we obtain

v ” (r"rl)(rcrlj "\ ' g R, Y
%Q:-'li {/‘f Je -2 LA ]E-V"P]g(uv(r’r ~ A—’Jol!'ﬂt!‘ﬂt‘."

h-b' (V\-V’)(V‘-W) (v-w) '
A /- = -’-3,0”.,__:" VA SOIREANNY Aog 4 P
)\~ le-x'|3 |o~rf]s |e-ri? =
‘U) 4 roh / / 4
-G, (v 0 p'w) de'de'de” (5.5.14)

It may be shown by an znslysis similar to.that used in interpreting
the lesd terms of U# and ésf [see (5.5.9) and (405015')] that the
first term in (5.5.14) is &ue to charge-current interactions and the
second term to charge~dipole current interactions.

If, as a further approximation, we assume the position of the
particles in cur system are uncorrelated with the Brownian motion
velocities, it is easily shown by techniques similar to those used
in deriving (4.2.14) that

(o) ) ;o ) ,
G (v n E")';Q}, (£,e,2,%). (5.5.15)
Therefore, eliminating the second term in (5.5.14) from further
consideration we write after a bit of manipulation involving the

/ /"
dummy variables A/ and A/ in the first term,
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|e-el? £ i

)+ )
| (el ) olt e
|| g R M v e

(5.5.16)

In proceeding from the initial to the final form of (5.5.16), we have
- /
made use of the »wpression relating the Brownian motion velocity) AL 3

H( -
to the total veiocity)@i Lfee (5.2.21)} .

A second Jd.stribution function, 'jdﬂ (EJE), is now defined as

M) (£) g (r+@) d"ﬂ (v, Q) :Z-Kuﬁdf(rh‘-z) J’(r,fr’) >,
htks (5.5.17)

In the above equation, /EQ(([) , defined by

mdr\&(ﬂz?@u&(r RS (5.5.18)

©
is the stream velccity of particles of type 0( . Treating g% i

(0) -
a manner similar to the treatment of PJ in (4.5.16) and making use

of the above distribution function results in the expression,

K\_k,/ Cﬁ;‘ox(r,r’)e«’, @")AL_«’Au":

- (5.5.19)

2 r@/*\o(()/"x()[d‘*ﬂ %) ']
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i

When (5.5.19) is substituted into (5.5.16), the energy flux density

may be written as

<
-t n ;edeﬁg 7_:'_‘r'€+ %— My )/“p (r+R [j,(ﬂ (e, R 1]0112
= ii;;"’xeﬁ (@Jﬁ a1
o{mﬂ(r)mx(r)@« (5)( [, -']'/’}3 (<) e (&) {3«,,(*:,8% ']}0/5.
(5.5.20)

In writing the last form of (5.5.20), use is made of the previously

discussed approximation,

/V\/3 (ﬁ+&>:/“/3 (5), (4.5.27)

The Irving znd Kirkwood expression for the collisional energy
flux of a gas composed of molecules with a short range interaction

potential becomes

—%./4?: %;C‘Q ([;"r% KR | (5.5.21)
[ it
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when the short range pctential is replaced by a coulomb potential.

For large R both Cj{f)@>‘—3‘ and SCEJEB——9’ to a first approximation.
Hence, in this limit; fg; is a divergent integral while the 4‘¢ of
this work is a convergent integral. As in the case of t]¢ , the
integral in £%¢ converges because it involves only the short range
effects of the intermolecular potential. The long range effects that
make g; divergent are included in this treatment in the long-range
power term, )( , where they are expressed in terms of the macroscopic

electromagnetic fields.

5.6 Compariscns with Previous Results

In this section, we compare the form of the energy equation of
change derived in this work with those obtained in earlier develop-
ments.

First we compére our results with those of Kaufman,7 Kaufman,
as was pointed out in section 4.6, treated statistically a system
of point particles without internal structure ignoring magnetic
effects. If we introduce these approximations into ouf equation

(5.4.5), we obtain

2;?; f(uv‘,;/v*) 1u = -%- ¢ (U+£~“B»:+Jgu +41 5.6.1)

where K%ee (SOBQIZiZ
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*

= <FTT (5.6.2)

Ire kinetic contriburice ngth U remains unchanged while the

collisicnal comrribution [ see (5.3, 9)] becomes

L B €/ (3. )

Similer o, ihe wizetic comtribution €O ﬁ'/g"f% remains unchanged

while the zollizionsl comtributicn (see {5,2.16) aund (\SGZCZO)‘]

(5.6.4)

In cur notetizcs Ke.fran's energy equation of change is

2 { U+ ) L EMHE Y“‘
"sx‘f( e E By

» (U%%Afhgw +%M{+/J4q 9E)<d’>]

ok
(5.6.5)



0

ey

ot

Comparing this equation with (5.6.1) we see that the only difference
is that Kaufman includes the 'self field" termssg/,‘(‘ and %‘J{’
and the term (J‘hm- )<¢> he ''self field" terms are the terms
we neglected in developing (5.1.1) and (5.2.4). In dropping the
"self field" terms, we point out that they are neglected for a large
scale system. In keeping these same terms, Kaufman points out that
they are important only for a small scale system. On this point,
then, thers seams to be no conflict. Furthermore, it seems to us
that Kaufman was in error in including the term (J "‘t.m’ 3E < >
in his equaticn, hecause when we apply Kaufman's approximations to

Maxwell's fourt. equation, (2.4.24), we obtain

J+G‘ﬁ%‘“=0. (506;6)

A |im

It is, thus, cur conclusion that there is no basic disagreement
between cur work and that of Kaufman.

We now compare our statistical treatment with Chu's
1" 0 114 A i ¢ \
thermodynamic' treatment. Chu's equation of energy change may be
written

T o€, q.yLdA
e TR HA

f(uK+l )+J;J7'T(Q'E+E'ﬂ)+;'ﬁ(2'l§ 7 T &

(5.6.7)

i
—_
& -
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where € 5 /(A , and :f are, respectively, the dielectric constant,
the magnetic permeability, and the mass density of the system.
Comparing the above equation with the equation of change, (5.4.5),
derived in this work, we observe that the long range energy density,

UL. , and energy flux) %L s (see (5.3.12) and (5°3¢13)]

replaced in Chu's work by ;‘ﬁ(&@ﬂ}ﬂ) and ‘L%'r EXH |, respectively.

Chu, therefore, agrees with the usual macroscopically derived
expressions for the energy density and energy flux [see (5.5.5) and
the discussion following (5.5;8)] ; but he does not agree with our
results., Furthermore, in comparing (5.6.7) and (5.4.5), we observe
that the correlation energy density, j’ U,i, , obtained here
[ see (5.2. 16)] is replaced in Chu's treatment by

28 Loy T

30 Q E6 T Cm 31’ Also, Chu replaces the correlation

energy flux, KU‘,«»-}kboM +$¢ of this work (see (5.2.16),

(5.2.17), and (5.2. 20)] by his 1{E -Ic-: §$ %’ %gi)

oH (TQAL ias)

. This last difference results from the
TTE o4 S
difference between a statistical basis and a thermodynamic basis
for the derivation of the energy equation. The thermodynamic basis
Chu uses treats the short range forces between molecules in terms of
gradients of €  and /U s while the statistical basis used here
treats these same forces in terms of the correlation quantities,
) and
¢ o doe 8y ,
. . . 21
The final ccmparison that we make is with the work of Pai.

His treatment is also based on thermodynamic arguments. In the
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aotation used here, Pai's energy equation of change (ignoring the

atffects of radiation) is

0 : £
—%{— f(UK%LlAf‘) *é‘?r (D'E+B‘H> =Tor’ fu"/"r+.4§" e +%k+ ‘fTr-E-X-H
- (5.6.8)

Comparing this equation with (5.4.5), we see that, as in the previous
case, the UL and %’L of our work is replaced by élﬁ (Q'§ +[_;'H
-
and ;f; E X H i1 Pai's treatment. Hence Pai's long range terms
agree with those of the usual macroscopic derivations rather than
Jith ours. Unii.c Chu, Powever, Pai has no terms comparable with
sur coliisgional terms Lo take into account the short range inter-
molecu’ar potentzal
The esseit12]l point in the development of this chapter, as in
the development of Chapter IV is the separation of the effect of the
electromagnet ic force into long and short range terms. The coulomb
portion of the short range term leads to the collisional contributions
3U¢ , é(yand %¢ , to the ener gy density, pressure tensor, and

energy flux, respectively. The portion describing the retardation

/
and magnetic effects is left as a power term, Z& . The long range
term is written in two ways. Writing it as a power term, X, gives
rise to one form,(5.4.2), of the energy equation of change. Writing
it as an electromagnetic contribution, Q[ , to the energy flux
plus an electromagnetic contribution, ﬁ bL , to the energy density,

/
plus an 'extraneous" power, X , gives rise to a second form,
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(5.4.4), of this equation.

The present statistical derivations of the electromagnetic
energy density and energy flux help to clarify the nature of these
quantities. As in the previous chapter, on comparing this work with
that of other authors, agreement is found with those using statistical

methods and disagreement with those using 'thermodynamic'" derivations.
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SUMMARY

In this work we have used classical, non-relativistic mechanics
to describela system of molecules composed of nuclei and electrons
with a purely coulomb potential of interaction. The primary aim has
been to derive the equations describing the time evolution of certain
fundamental macroscopic properties of the system, namely the electric
and magnetic field densities and the mass, momentum, and energy
densities.

In Chapter I, the time evolution of the microscopic properties
of the system is described in terms of Maxwell's and Newton's
equations [see (1.1.1) through (1.1. 6{] and the Hamiltonian of
the system is derived [gee (1.4. 1i] . The concept of a
macroscopic property is defined in terms of a statistical ensemble
average of the corresponding micrbscopic property [see (1,5.2i] .

From this definition and the Hamiltonian, an equation of change,

3<3> ——<A a> ‘ | (1.,5;16)

is derived for any macroscopic dynamical variable. The operator‘jﬂ.
is analogous to the Lioyville operator for the system (%ee (1.5.10{]
In Chapter II, this general equation of change is used to derive
the Maxwell equations 4
9
v B =

Y 94 (2.1.3)



1 9B 3 | 2.2.7)
L 2

‘__.D-_L.HTjn (2.3.17)

——=Coy X A -4ymJ (2.4.24)

for the macroscopic electromagnetic fields. 1In the above equations

e
E and B Lse.c (2.2.4) and (2.1,1)] are the macroscopic electric

and magnetic fields, the sources of which are the nuclei and electrons

of the system [see the discussions at the ends of sections 2.3 and

Z”A] . The quantity fe is the charge density [see (2,3,13)]

and J is the current density {see (2,4.21)] . The quantities

D=E +uUmTP (2.3;16)

\

and

[ s
1

B "H’TFM (2.4.23)

——

are, respectively, the electric displacement and the magnetic

intensity, the sources of which are the molecules of the system.
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The polarization, _E s, and magnetization, M , appearing in the
above equations are further defined {see (2.3.15) and (2.4.22)
in terms of the molecular multipole densities Q(ﬁ), l:j;(;), and g‘:\
[see. (2.3.11), (2.4.19), and (2,4,20)] which result from the
one-center multipole expansion of the intermolecular potential. The
Maxwell equations given here for a molecular system are the familiar
Maxwell equations in a material medium. The statistical derivation
of these equations is new, however, and the explicit expressions
obtained for the polarization and magnetization clarify the physical
significance of these quantities.

In the finsl three chapters the hydrodyhamic equations of change

are derived. The equation cf change for the mass density, f)

{ see (3.0.,4)1 , which is

) o
L sege=o, .

is the same for a coulomb gas as for a non-ionized gas.

The quantity AL in the above equation is the stream velocity

(:see (2.4, 25)} .

The equation of change for the momentum density is written in

two forms,

UE 8 a2 (hobracx o
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and

These equations may be compared with the momentum equation of change

for a non-ionized dilute gas,

o) 2
R C a2t

where é“ is the kinetic pressure tensor [see (4.1.,5)] . The

(0.0.2)

terms by which (4.4.2) and (4.4.4) differ from the above equation
represent the effects of the coulomb potential,
These effects are of two types. The short range or ''collisional"
effects discussed in detail in section 4.2 are represented by £¢
(jsee (AZ.ZO;}3 the "collisional" contribution to the pressure
tensor, and !;F‘{gee (4°2.55] . The long range effects discussed
in section 4.3 are represented in (4.4.2) by the "pondermotive' force,
2S [Fee (4.3,20iz or in (4.4;4) by the long range electromagnetic
contribution tc the pressure tensor, éL {see (4.3.33)] , and the
electromagnetic contribution to the momentum density, E! (%ee (4.3.32;} .
The low density limit of the momentum equation is discussed in section
4.5 and compared with previous results in section 4.6.

The equation of change for the energy density is derived in

Chapter V. Again two forms,
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gg(UK+U¢ +41-,v1)

ot

e ot goafocss

(5.4.2)

39;[? (UK+'U¢+ {Af1)+ UL]:
¢

-£- f(u,( +U, +4L,v’*)/_f_+ (kﬁ/é«v)vt_f + 3¢t %o *44—}

(5.4.5)
/ /
+X + 4,
are obtained. The energy equation for a non-ionized gas is
R RPN A
- _ Y . U+t é (0.0.3)
ot yr |[SRT IVt oyl + 4

where ,S UK is the kinetic energy density [see (5.051)] and Q"K

is the kinetic energy flux {see (5.1,6)] . The terms by which
(5.4;2) and (5.4.5) differ from the above equation represent the
effects of the coculomb potential. The short range effects discussed
in section 5.2 are represented by {(j¢, the collisional contribution
to the energy density (see (5,2.17)] s by %_¢ , the short range
contribution to the energy flux (:see (5.2.20)} , by £¢ , and by

/ .
A see (5.2419)] . The long range coulomb effects are represented



139

in (5.4.2) tnr‘x , the electromagnetic power [see (S.B;Bi? . In
(5.4.5), the long range effects are represented by (4_ and 4‘L , the
electromagnetic contributions to the energy density and energy flux
( see (5.3.12) and (5.3;13i} and by )(’ [\see (5=3;11):] .

The low density limit of the energy equation is discussed in
section 5.5. and:compared with previous results in section 5.6,

The results obtained in this work for the equations of change
for the momentum and energy densities agree quite well with previous
results derived, statistically, for various special cases. The
results, however, disagree with several earlier results obtained by

other, "thermody=amic'y nethods.
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